Approximation properties of (p, q)-Bernstein type operators

被引:3
|
作者
Finta, Zoltan [1 ]
机构
[1] Univ Babes Bolyai, Dept Math, R-3400 Cluj Napoca, Romania
关键词
(p; q)-integers; q)-Bernstein operators; limit; q)-Bernstein operator; q)-Kantorovich operators; rate of convergence; modulus of continuity;
D O I
10.1515/ausm-2016-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new generalization of the q-Bernstein operators involving (p, q)-integers, and we establish some direct approximation results. Further, we define the limit (p, q)-Bernstein operator, and we obtain its estimation for the rate of convergence. Finally, we introduce the (p, q)-Kantorovich type operators, and we give a quantitative estimation.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 50 条
  • [41] Approximation properties and error estimation of q-Bernstein shifted operators
    Mohammad Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Numerical Algorithms, 2020, 84 : 207 - 227
  • [42] Statistical approximation properties of λ-Bernstein operators based on q-integers
    Cai, Qing-Bo
    Zhou, Guorong
    Li, Junjie
    OPEN MATHEMATICS, 2019, 17 : 487 - 498
  • [43] Approximation properties and error estimation of q-Bernstein shifted operators
    Mursaleen, Mohammad
    Ansari, Khursheed J.
    Khan, Asif
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 207 - 227
  • [44] Approximation properties of recursively defined Bernstein-type operators
    Campiti, M
    Metafune, G
    JOURNAL OF APPROXIMATION THEORY, 1996, 87 (03) : 243 - 269
  • [45] Approximation Properties of Generalized λ-Bernstein-Stancu-Type Operators
    Cai, Qing-Bo
    Torun, Gulten
    Dinlemez Kantar, Ulku
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [46] ON APPROXIMATION PROPERTIES OF A NEW TYPE OF BERNSTEIN-DURRMEYER OPERATORS
    Acar, Tuncer
    Aral, Ali
    Gupta, Vijay
    MATHEMATICA SLOVACA, 2015, 65 (05) : 1107 - 1122
  • [47] On Durrmeyer-type generalization of (p, q)-Bernstein operators
    Sharma, Honey
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (04) : 239 - 248
  • [48] APPROXIMATION PROPERTIES OF CERTAIN BERNSTEIN-STANCU TYPE OPERATORS
    Acu, Ana-Maria
    Dogru, Ogun
    Muraru, Carmen Violeta
    Radu, Voichita Adriana
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 687 - 702
  • [49] Approximation Properties of Generalized λ-Bernstein-Kantorovich Type Operators
    Kumar, Ajay
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 505 - 520
  • [50] A basic problem of (p, q)-Bernstein-type operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,