APPROXIMATION PROPERTIES OF CERTAIN BERNSTEIN-STANCU TYPE OPERATORS

被引:2
|
作者
Acu, Ana-Maria [1 ]
Dogru, Ogun [2 ]
Muraru, Carmen Violeta [3 ]
Radu, Voichita Adriana [4 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr 1 Ratiu,5-7, RO-550012 Sibiu, Romania
[2] Gazi Univ, Fac Arts & Sci, Dept Math, TR-06500 Ankara, Turkey
[3] Vasile Alecsandri Univ Bacau, Dept Math Informat & Educ Sci, Bacau, Romania
[4] Babes Bolyai Univ, FSEGA, Dept Stat Forecasts Math, Cluj Napoca, Romania
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 03期
关键词
Bernstein-Stancu operator; q-integers; rate of convergence; moduli of continuity; DURRMEYER TYPE OPERATORS; VARIANT;
D O I
10.7153/jmi-2019-13-46
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and investigate a new operator of Bernstein-Stancu type, based on q-polynomials. We study approximation properties for these operators based on Korovkin type approximation theorem and study some direct theorems. Also, the study contains numerical considerations regarding the constructed operators based on Maple algorithms.
引用
收藏
页码:687 / 702
页数:16
相关论文
共 50 条
  • [1] ON BERNSTEIN-STANCU TYPE OPERATORS
    Gavrea, I.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 81 - 88
  • [2] On the approximation by operators of Bernstein-Stancu types
    Wang, Meilin
    Yu, Dansheng
    Zhou, Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 79 - 87
  • [3] Approximation by generalized Bernstein-Stancu operators
    Cetin, Nursel
    Radu, Voichita Adriana
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (04) : 2032 - 2048
  • [4] On approximation of Bernstein-Stancu operators in movable interval
    Wagn, Feng-feng
    Yu, Dan-sheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2025, 40 (01) : 85 - 101
  • [5] On approximation of Bernstein-Stancu operators in movable interval
    WAGN Feng-feng
    YU Dan-sheng
    Applied Mathematics:A Journal of Chinese Universities, 2025, 40 (01) : 85 - 101
  • [6] Uniform approximation of functions by Bernstein-Stancu operators
    Holhos, Adrian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 205 - 212
  • [7] On the Properties of the Modified λ-Bernstein-Stancu Operators
    Lin, Zhi-Peng
    Torun, Gulten
    Kangal, Esma
    Kantar, Ulku Dinlemez
    Cai, Qing-Bo
    SYMMETRY-BASEL, 2024, 16 (10):
  • [8] BERNSTEIN-STANCU OPERATORS
    Cleciu, Voichita Adriana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 53 - 65
  • [9] Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
    Dong, Lvxiu
    Yu, Dansheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [10] Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
    Lvxiu Dong
    Dansheng Yu
    Journal of Inequalities and Applications, 2017