A 1200 ELEMENT DETECTOR SYSTEM FOR SYNCHROTRON-BASED CORONARY ANGIOGRAPHY

被引:10
|
作者
THOMPSON, AC
LAVENDER, WM
CHAPMAN, D
GMUR, N
THOMLINSON, W
ROSSO, V
SCHULZE, C
RUBENSTEIN, E
GIACOMINI, JC
GORDON, HJ
DERVAN, JP
机构
[1] STANFORD UNIV,HANSEN EXPTL PHYS LAB,STANFORD,CA 94305
[2] BROOKHAVEN NATL LAB,NATL SYNCHROTRON LIGHT SOURCE,UPTON,NY 11973
[3] UNIV PISA,DIPARTIMENTO FIS,I-56100 PISA,ITALY
[4] EUROPEAN SYNCHROTRON RADIAT FACIL,GRENOBLE,FRANCE
[5] STANFORD UNIV,DEPT CHEM,STANFORD,CA 94305
[6] SUNY STONY BROOK,DIV CARDIOL,STONY BROOK,NY 11794
基金
美国国家卫生研究院;
关键词
D O I
10.1016/0168-9002(94)91945-3
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long x 11 mm high x 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. An Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.
引用
收藏
页码:545 / 552
页数:8
相关论文
共 50 条
  • [31] Trace-element chemical analyses with synchrotron-based X-ray microprobes.
    Sutton, SR
    Flynn, GJ
    Rivers, M
    Eng, P
    Newville, M
    Shea-McCarthy, G
    Lanzirotti, A
    METEORITICS & PLANETARY SCIENCE, 1999, 34 : A113 - A114
  • [32] A bent Laue-Laue monochromator for a synchrotron-based computed tomography system
    Ren, B
    Dilmanian, FA
    Chapman, LD
    Ivanov, I
    Wu, XY
    Zhong, Z
    Huang, X
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 428 (2-3): : 528 - 550
  • [33] Actinide speciation using synchrotron-based methods
    Melissa A. Denecke
    Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 : 1339 - 1343
  • [34] Commissioning of a Novel Gantry-Less and Synchrotron-Based Proton Therapy System
    Pryanichnikov, Alexander
    Feldman, Jon
    Achkienasi, Alejandro
    Polyansky, Ilya
    Hillman, Yair
    Raskin, Stas
    Blumenfeld, Philip
    Popovtzer, Aron
    Marash, Michael
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4814 - S4816
  • [35] Actinide speciation using synchrotron-based methods
    Denecke, Melissa A.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2015, 303 (02) : 1339 - 1343
  • [36] Synchrotron-based structural proteomics of vesicle transport
    Wakatsuki, Soichi
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2007, 24 (06): : 717 - 718
  • [37] Treatment planning for a synchrotron-based radiotherapy modality
    Manolopoulos, S.
    Wojnecki, C.
    Green, S.
    Hugtenburg, R. P.
    Jones, B.
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (03) : 492 - 494
  • [38] Synchrotron-based spectroscopy for solar energy conversion
    Himpsel, F. J.
    Cook, P. L.
    Zegkinoglou, I.
    Boukahil, Idris
    Qiao, R.
    Yang, W.
    Pemmaraju, S. C.
    Prendergast, D.
    Kronawitter, C. X.
    Kibria, M. G.
    Mi, Zetian
    Vayssieres, L.
    SOLAR HYDROGEN AND NANOTECHNOLOGY X, 2015, 9560
  • [39] Progress of Synchrotron-Based Research on Atmospheric Science
    Kong, Xiangrui
    Dou, Jing
    Chen, Shuzhen
    Wang, Bingbing
    Wu, Zhijun
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 963 - 972
  • [40] INTRAVENOUS CORONARY ANGIOGRAPHY WITH SYNCHROTRON-RADIATION
    DIX, WR
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1995, 63 (02): : 159 - 191