COVARIANCE INEQUALITIES FOR STRONGLY MIXING PROCESSES

被引:0
|
作者
RIO, E
机构
关键词
STRONGLY MIXING PROCESSES; COVARIANCE INEQUALITIES; QUANTILE TRANSFORMATION; MAXIMAL CORRELATION; STATIONARY PROCESSES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X and Y be two real-valued random variables. Let alpha denote the strong mixing coefficient between the two sigma-fields generated respectively by X and Y, and Q(X) (u) = inf {t: P (Absolute value of X > t) less-than-or-equal-to u} be the quantile function of Absolute value of X. We prove the following new covariance inequality: \Cov (X, Y)\ less-than-or-equal-to 2 integral-2alpha/0 Q(X) (u) Q(Y) (u) du, which we show to be sharp, up to a constant factor. We apply this inequality to improve on the classical bounds for the variance of partial sums of strongly mixing processes.
引用
收藏
页码:587 / 597
页数:11
相关论文
共 50 条
  • [31] PERTURBED THREE-STEP ITERATIVE PROCESSES WITH ERRORS FOR GENERAL STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES
    Zhao, Yali
    Xia, Zunquan
    Liu, Zeqing
    Kang, Shin Min
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 17 (1-2) : 171 - 183
  • [32] Strongly mixing operators on Hilbert spaces and speed of mixing
    Devinck, Vincent
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 1394 - 1434
  • [33] Covariance and comparison inequalities under quadrant dependence
    Przemysław Matuła
    Maciej Ziemba
    Periodica Mathematica Hungarica, 2015, 71 : 35 - 44
  • [34] Covariance and comparison inequalities under quadrant dependence
    Matula, Przemyslaw
    Ziemba, Maciej
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (01) : 35 - 44
  • [35] Mixing inequalities in Riesz spaces
    Kuo, Wen-Chi
    Rogans, Michael J.
    Watson, Bruce A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 992 - 1004
  • [36] Strongly quasivariational inequalities for fuzzy mappings
    Lee, GM
    Kim, DS
    Lee, BS
    FUZZY SETS AND SYSTEMS, 1996, 78 (03) : 381 - 386
  • [37] INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS
    FEFFERMAN, C
    ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2): : 9 - +
  • [38] STRONGLY NONLINEAR ELLIPTIC VARIATIONAL INEQUALITIES
    TON, BA
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 48 (01) : 279 - 291
  • [39] Ishikawa and Mann iterative processes with errors for generalized strongly nonlinear implicit quasi-variational inequalities
    Cho, YJ
    Kim, JH
    Huang, NJ
    Kang, SM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (04): : 635 - 649
  • [40] On the isoperimetric constant, covariance inequalities and Lp-Poincare inequalities in dimension one
    Saumard, Adrien
    Wellner, Jon A.
    BERNOULLI, 2019, 25 (03) : 1794 - 1815