Mixing inequalities in Riesz spaces

被引:8
|
作者
Kuo, Wen-Chi [1 ]
Rogans, Michael J. [2 ]
Watson, Bruce A. [3 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, Private Bag 3, ZA-2050 Po Wits, South Africa
[2] Univ Witwatersrand, Sch Stat & Actuarial Sci, Private Bag 3, ZA-2050 Po Wits, South Africa
[3] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Po Wits, South Africa
关键词
Riesz spaces; Vector lattices; Mixing processes; Dependent processes; Conditional expectation operators; CONDITIONAL-EXPECTATION; VECTOR LATTICES; MARTINGALES; LAWS;
D O I
10.1016/j.jmaa.2017.07.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various topics in stochastic processes have been considered in the abstract setting of Riesz spaces, for example martingales, martingale convergence, ergodic theory, AMARTS, Markov processes and mixingales. Here we continue the relaxation of conditional independence begun in the study of mixingales and study mixing processes. The two mixing coefficients which will be considered are the alpha (strong) and phi (uniform) mixing coefficients. We conclude with mixing inequalities for these types of processes. In order to facilitate this development, the study of generalized L-1 and L-infinity spaces begun by Kuo, Labuschagne and Watson will be extended. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:992 / 1004
页数:13
相关论文
共 50 条
  • [1] Burkholder Inequalities in Riesz spaces
    Azouzi, Youssef
    Ramdane, Kawtar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (05): : 1076 - 1094
  • [2] Jensen's and martingale inequalities in Riesz spaces
    Grobler, Jacobus
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (02): : 275 - 295
  • [3] Fejer-Riesz type inequalities for Bergman spaces
    Andreev, Valentin V.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2012, 61 (03) : 385 - 392
  • [4] Hardy–Sobolev Inequalities For Riesz Potentials Of Functions In Orlicz Spaces
    Y. Mizuta
    T. Shimomura
    Acta Mathematica Hungarica, 2023, 171 (2) : 221 - 240
  • [5] Hardy-Sobolev Inequalities For Riesz Potentials Of Functions In Orlicz Spaces
    Mizuta, Y.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (02) : 221 - 240
  • [6] A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators
    Fofana I.
    Faléa F.R.
    Kpata B.A.
    Afrika Matematika, 2015, 26 (5-6) : 717 - 739
  • [7] Trudinger's inequalities for Riesz potentials in Morrey spaces of double phase functionals on half spaces
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021,
  • [8] PROOF THEORY OF RIESZ SPACES AND MODAL RIESZ SPACES
    Lucas, Christophe
    Mio, Matteo
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01) : 32:1 - 32:64
  • [9] INTERPOLATION OF SOBOLEV SPACES, LITTLEWOOD-PALEY INEQUALITIES AND RIESZ TRANSFORMS ON GRAPHS
    Badr, Nadine
    Russ, Emmanuel
    PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 273 - 328
  • [10] WEIGHTED INEQUALITIES FOR RIESZ-POTENTIALS AND FRACTIONAL MAXIMAL FUNCTIONS IN ORLICZ SPACES
    KOKILASHVILI, VM
    KRBEC, M
    DOKLADY AKADEMII NAUK SSSR, 1985, 283 (02): : 280 - 283