PERFECT POLYNOMIALS REVISITED

被引:0
|
作者
BEARD, JTB
机构
[1] UNIV TENNESSEE,KNOXVILLE,TN 37996
[2] TENNESSEE TECHNOL UNIV,COOKEVILLE,TN 38505
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1991年 / 38卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Earlier it was shown that every splitting polynomial A = = (x(p) - x)Np(n)-1 with N\(p - 1), n greater-than-or-equal-to 0 is perfect over GF(p); i.e., the sum sigma-(A) of the distinct monic divisors of A over GF(p) equals A. Conversely, it was proved in detail that whenever a splitting polynomial A = [GRAPHICS] is perfect over GF(p) then the N(i)\(p - 1) and n(0) = ... = n(p - 1); and it was claimed (as already proved by CANADAY for p = 2) that N(0) = ... = N(p - 1). This note verifies the claim in detail, via an argument on the level divisors of A. In the process, an equivalence relation is exhibited on the set of splitting perfect polynomials over GF(p) and an intriguing multinomial identity modulo p is discovered.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [41] PERFECT HOMOGENEOUS IDEALS - DUBREIL THEOREMS REVISITED
    DAVIS, ED
    GERAMITA, AV
    MAROSCIA, P
    BULLETIN DES SCIENCES MATHEMATIQUES, 1984, 108 (02): : 143 - 185
  • [42] The strong perfect in proto-Romance revisited
    Dardel, RD
    NEUPHILOLOGISCHE MITTEILUNGEN, 2000, 101 (03) : 429 - 442
  • [43] THE HIBERNO-ENGLISH PERFECT - GRAMMATICALISATION REVISITED
    KALLEN, JL
    IRISH UNIVERSITY REVIEW, 1990, 20 (01) : 120 - 136
  • [44] Casimir Energy For Perfect Electric Conductors Revisited
    Salazar-Lazaro, Carlos H.
    Chew, Weng Cho
    Stone, Micheal
    2019 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2019), 2019,
  • [45] ON SPLITTING PERFECT POLYNOMIALS OVER F-pp
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 9 : 85 - 102
  • [46] On splitting perfect polynomials over Fp2
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    PORTUGALIAE MATHEMATICA, 2009, 66 (03) : 261 - 273
  • [48] The Generalized Clifford-Gegenbauer Polynomials Revisited
    Nele De Schepper
    Advances in Applied Clifford Algebras, 2009, 19 : 253 - 268
  • [49] Strong and ratio asymptotics for Laguerre polynomials revisited
    Deano, Alfredo
    Huertas, Edmundo J.
    Marcellan, Francisco
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) : 477 - 486
  • [50] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS REVISITED
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2022, 60 (03): : 229 - 234