PERFECT POLYNOMIALS REVISITED

被引:0
|
作者
BEARD, JTB
机构
[1] UNIV TENNESSEE,KNOXVILLE,TN 37996
[2] TENNESSEE TECHNOL UNIV,COOKEVILLE,TN 38505
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1991年 / 38卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Earlier it was shown that every splitting polynomial A = = (x(p) - x)Np(n)-1 with N\(p - 1), n greater-than-or-equal-to 0 is perfect over GF(p); i.e., the sum sigma-(A) of the distinct monic divisors of A over GF(p) equals A. Conversely, it was proved in detail that whenever a splitting polynomial A = [GRAPHICS] is perfect over GF(p) then the N(i)\(p - 1) and n(0) = ... = n(p - 1); and it was claimed (as already proved by CANADAY for p = 2) that N(0) = ... = N(p - 1). This note verifies the claim in detail, via an argument on the level divisors of A. In the process, an equivalence relation is exhibited on the set of splitting perfect polynomials over GF(p) and an intriguing multinomial identity modulo p is discovered.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [21] JULIA SETS OF POLYNOMIALS ARE UNIFORMLY PERFECT
    HINKKANEN, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 153 - 159
  • [22] Perfect Rainbow Tradeoff with Checkpoints Revisited
    Hong, Jin
    PLOS ONE, 2016, 11 (11):
  • [23] CSCW REVISITED AND, PERFECT TIMING SOFTWARE
    CISLER, S
    DATABASE, 1989, 12 (02): : 119 - 123
  • [24] PAST PERFECT Reminiscences of Rob Revisited
    Schraffenberger, Jeremy
    Tracey, Grant
    NORTH AMERICAN REVIEW, 2018, 303 (04): : 48 - 48
  • [25] The perfect matching cut problem revisited
    Le, Van Bang
    Telle, Jan Arne
    THEORETICAL COMPUTER SCIENCE, 2022, 931 : 117 - 130
  • [26] Perfect reconstruction of black pixels revisited
    Simon, HU
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 221 - 232
  • [27] Perfect Smile - Dentofacial Esthetics Revisited
    Svejda, M.
    INFORMATIONEN AUS ORTHODONTIE UND KIEFERORTHOPAEDIE, 2010, 42 (01): : 15 - 19
  • [28] PAST PERFECT Food Adulterations Revisited
    Groninga, Kim
    NORTH AMERICAN REVIEW, 2013, 298 (04): : 50 - 50
  • [29] The perfect matching cut problem revisited
    Le, Van Bang
    Telle, Jan Arne
    Theoretical Computer Science, 2022, 931 : 117 - 130
  • [30] The Zeros of Quadratic Coquaternionic Polynomials Revisited
    Falcao, Maria Irene
    Miranda, Fernando
    Severino, Ricardo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT I, 2024, 14815 : 268 - 284