NONCOMMUTATIVE PROJECTIVE SCHEMES

被引:316
|
作者
ARTIN, M [1 ]
ZHANG, JJ [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,SEATTLE,WA 98195
关键词
D O I
10.1006/aima.1994.1087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analogue of the concept of projective scheme is defined for noncommutative N-graded algebras using the quotient category C of graded right A-modules module its full subcategory of torsion modules. We define proj A = (C, A, s), where A is the object corresponding to the module A(A), and s is the autoequivalence defined by the shift of degrees. The triples equivalent to proj A for a right noetherian graded algebra A are characterized in terms of a condition chi on extensions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:228 / 287
页数:60
相关论文
共 50 条
  • [41] The noncommutative schemes of generalized Weyl algebras
    Won, Robert
    JOURNAL OF ALGEBRA, 2018, 506 : 322 - 349
  • [42] BOUNDS ON DEGREES OF PROJECTIVE SCHEMES
    STURMFELS, B
    TRUNG, NV
    VOGEL, W
    MATHEMATISCHE ANNALEN, 1995, 302 (03) : 417 - 432
  • [43] Catalan numbers and noncommutative Hilbert schemes
    Lunts, Valery
    Spenko, Spela
    van den Bergh, Michel
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1433 - 1458
  • [44] Instanton sheaves on projective schemes
    Antonelli, Vincenzo
    Casnati, Gianfranco
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (04)
  • [45] On Reusable Projective Garbling Schemes
    Meskanen, Tommi
    Niemi, Valtteri
    Nieminen, Noora
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 315 - 322
  • [46] Mirror symmetry for weighted projective planes and their noncommutative deformations
    Auroux, Denis
    Katzarkov, Ludmil
    Orlov, Dmitri
    ANNALS OF MATHEMATICS, 2008, 167 (03) : 867 - 943
  • [47] Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings
    Reichelt, Thomas
    Saito, Morihiko
    Walther, Uli
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [48] Hybrid models for homological projective duals and noncommutative resolutions
    Jirui Guo
    Mauricio Romo
    Letters in Mathematical Physics, 2022, 112
  • [49] Hybrid models for homological projective duals and noncommutative resolutions
    Guo, Jirui
    Romo, Mauricio
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
  • [50] Ideal classes of the Weyl algebra and noncommutative projective geometry
    Berest, Y
    Wilson, G
    Van den Bergh, M
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (26) : 1347 - 1396