A Primer on Reproducing Kernel Hilbert Spaces

被引:24
|
作者
Manton, Jonathan H. [1 ]
Amblard, Pierre-Olivier [2 ]
机构
[1] Univ Melbourne, Melbourne, Vic 3010, Australia
[2] CNRS, F-38402 Grenoble, France
来源
关键词
D O I
10.1561/2000000050
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
引用
收藏
页码:1 / 126
页数:129
相关论文
共 50 条
  • [41] Reproducing kernel Hilbert spaces on manifolds: Sobolev and diffusion spaces
    De Vito, Ernesto
    Muecke, Nicole
    Rosasco, Lorenzo
    ANALYSIS AND APPLICATIONS, 2021, 19 (03) : 363 - 396
  • [42] REPRODUCING KERNEL HILBERT SPACES IN THE MEAN FIELD LIMIT
    Fiedler, Christian
    Herty, Michael
    Rom, Michael
    Segala, Chiara
    Trimpe, Sebastian
    KINETIC AND RELATED MODELS, 2023, 16 (06) : 850 - 870
  • [43] Uniform distribution, discrepancy, and reproducing kernel Hilbert spaces
    Amstler, C
    Zinterhof, P
    JOURNAL OF COMPLEXITY, 2001, 17 (03) : 497 - 515
  • [44] A refinement of the stability test for reproducing kernel Hilbert spaces
    Bisiacco, Mauro
    Pillonetto, Gianluigi
    AUTOMATICA, 2024, 163
  • [45] POSITIVE DEFINITENESS, REPRODUCING KERNEL HILBERT SPACES AND BEYOND
    Ferreira, J. C.
    Menegatto, V. A.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (01) : 64 - 88
  • [46] THE EXPLICIT FORMULAS FOR REPRODUCING KERNEL OF SOME HILBERT SPACES
    Moradi, E.
    Babolian, E.
    Javadi, S.
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 1041 - 1053
  • [47] Optimal sampling points in reproducing kernel Hilbert spaces
    Wang, Rui
    Zhang, Haizhang
    JOURNAL OF COMPLEXITY, 2016, 34 : 129 - 151
  • [48] A note on multiplier algebras on reproducing kernel Hilbert spaces
    Trent, Tavan T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2835 - 2838
  • [49] INTEGRATION IN REPRODUCING KERNEL HILBERT SPACES OF GAUSSIAN KERNELS
    Karvonen, Toni
    Oates, Chris J.
    Girolami, Mark
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2209 - 2233
  • [50] Estimation in Reproducing Kernel Hilbert Spaces With Dependent Data
    Sancetta, Alessio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1782 - 1795