CHARACTERIZATION OF SUPERLINEAR CONVERGENCE AND ITS APPLICATION TO QUASI-NEWTON METHODS

被引:0
|
作者
DENNIS, JE [1 ]
MORE, JJ [1 ]
机构
[1] CORNELL UNIV, DEPT COMP SCI, ITHACA, NY 14850 USA
关键词
D O I
10.2307/2005926
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:549 / 560
页数:12
相关论文
共 50 条
  • [41] Convergence of quasi-Newton methods for solving constrained generalized equations*
    Andreani, Roberto
    Carvalho, Rui M.
    Secchin, Leonardo D.
    Silva, Gilson N.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [42] A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    FONTECILLA, R
    STEIHAUG, T
    TAPIA, RA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1133 - 1151
  • [43] Explicit Convergence Rates of Greedy and Random Quasi-Newton Methods
    Lin, Dachao
    Ye, Haishan
    Zhang, Zhihua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [44] DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate
    Soori, Saeed
    Mischenko, Konstantin
    Mokhtari, Aryan
    Dehnavi, Maryam Mehri
    Gurbuzbalaban, Mert
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [45] THE APPLICATION OF QUASI-NEWTON METHODS IN FLUID-MECHANICS
    ENGELMAN, MS
    STRANG, G
    BATHE, KJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (05) : 707 - 718
  • [46] QUASI-NEWTON METHODS FOR SADDLEPOINTS
    BIEGLERKONIG, F
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (04) : 393 - 399
  • [47] Stochastic Quasi-Newton Methods
    Mokhtari, Aryan
    Ribeiro, Alejandro
    PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1906 - 1922
  • [48] Decentralized Quasi-Newton Methods
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (10) : 2613 - 2628
  • [49] A classification of quasi-Newton methods
    Brezinski, C
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 123 - 135
  • [50] APPROXIMATE QUASI-NEWTON METHODS
    KELLEY, CT
    SACHS, EW
    MATHEMATICAL PROGRAMMING, 1990, 48 (01) : 41 - 70