CHARACTERIZATION OF SUPERLINEAR CONVERGENCE AND ITS APPLICATION TO QUASI-NEWTON METHODS

被引:0
|
作者
DENNIS, JE [1 ]
MORE, JJ [1 ]
机构
[1] CORNELL UNIV, DEPT COMP SCI, ITHACA, NY 14850 USA
关键词
D O I
10.2307/2005926
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:549 / 560
页数:12
相关论文
共 50 条
  • [11] Superlinear convergence of factorized structured quasi-Newton methods for nonlinear optimization
    Ogasawara, H
    Yabe, H
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2000, 17 (01) : 55 - 80
  • [12] Local and superlinear convergence of structured quasi-Newton methods for nonlinear optimization
    Yabe, H
    Yamaki, N
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1996, 39 (04) : 541 - 557
  • [13] Non-asymptotic superlinear convergence of standard quasi-Newton methods
    Jin, Qiujiang
    Mokhtari, Aryan
    MATHEMATICAL PROGRAMMING, 2023, 200 (01) : 425 - 473
  • [14] Greedy and Random Quasi-Newton Methods with Faster Explicit Superlinear Convergence
    Lin, Dachao
    Ye, Haishan
    Zhang, Zhihua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [15] Non-asymptotic superlinear convergence of standard quasi-Newton methods
    Qiujiang Jin
    Aryan Mokhtari
    Mathematical Programming, 2023, 200 : 425 - 473
  • [16] Local and superlinear convergence of quasi-Newton methods based on modified secant conditions
    Yabe, Hiroshi
    Ogasawara, Hideho
    Yoshino, Masayuki
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 617 - 632
  • [17] AN INCREMENTAL QUASI-NEWTON METHOD WITH A LOCAL SUPERLINEAR CONVERGENCE RATE
    Mokhtari, Aryan
    Eisen, Mark
    Ribeiro, Alejandro
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4039 - 4043
  • [18] Sharpened Quasi-Newton Methods: Faster Superlinear Rate and Larger Local Convergence Neighborhood
    Jin, Qiujiang
    Koppel, Alec
    Rajawat, Ketan
    Mokhtari, Aryan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10228 - 10250
  • [20] Quasi-Newton methods: superlinear convergence without line searches for self-concordant functions
    Gao, Wenbo
    Goldfarb, Donald
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (01): : 194 - 217