Ensemble of different improvements in differential evolution for parameter extraction of PEMFC model

被引:0
|
作者
Gong, Wenyin [1 ]
Cai, Zhihua [1 ]
Du, Jun [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 3K7, Canada
基金
中国国家自然科学基金;
关键词
PEMFC; proton exchange membrane fuel cell; parameter extraction; differential evolution; ensemble;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to improve the design of the proton exchange membrane fuel cell (PEMFC) model, in this paper, a modified differential evolution (MDE) method is employed for extracting the unknown parameters of PEMFC model. In MDE, an ensemble of three improvements presented in the differential evolution (DE) literature is implemented. These improvements are: i) opposition-based population initialisation; ii) tournament-based base vector selection; iii) single population structure of DE. To verify the performance of MDE, it is used to solve the parameter extraction problems of PEMFC model. Experimental results indicate that the simulated data of the EPMFC model with the extracted parameters well agrees with the experimental data. In addition, compared with artificial bee colony, the original DE algorithm, and the comprehensive learning particle swarm optimisation, the superiority of MDE is demonstrated.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [31] Parameter tuning for software fault prediction with different variants of differential evolution
    Nikravesh, Nazgol
    Keyvanpour, Mohammad Reza
    Expert Systems with Applications, 2024, 237
  • [32] Parameter tuning for software fault prediction with different variants of differential evolution
    Nikravesh, Nazgol
    Keyvanpour, Mohammad Reza
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [33] Parameter Selection of Differential Evolution by another Differential Evolution Algorithm
    Chang, Yen-Ching
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2506 - 2511
  • [34] An Ensemble Differential Evolution for Numerical Optimization
    Yu, Xiaobing
    Wang, Xuming
    Cao, Jie
    Cai, Mei
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2015, 14 (04) : 915 - 942
  • [35] Differential evolution with collective ensemble learning
    Zhang, Sheng Xin
    Liu, Yu Hong
    Zheng, Li Ming
    Zheng, Shao Yong
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 87
  • [36] Ensemble Strategies in Compact Differential Evolution
    Mallipeddi, Rammohan
    Iacca, Giovanni
    Suganthan, Ponnuthurai Nagaratnam
    Neri, Ferrante
    Mininno, Ernesto
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1972 - 1977
  • [37] Improved ensemble of differential evolution variants
    Yao, Juan
    Chen, Zhe
    Liu, Zhenling
    PLOS ONE, 2021, 16 (08):
  • [38] Parameter optimization for a PEMFC model with a hybrid genetic algorithm
    Mo, Zhi-Jun
    Zhu, Xin-Jian
    Wei, Ling-Yun
    Cao, Guang-Yi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (08) : 585 - 597
  • [39] Parameter extraction of solar photovoltaic modules using penalty-based differential evolution
    Ishaque, Kashif
    Salam, Zainal
    Mekhilef, Saad
    Shamsudin, Amir
    APPLIED ENERGY, 2012, 99 : 297 - 308
  • [40] A robust method based on reinforcement learning and differential evolution for the optimal photovoltaic parameter extraction
    Yu, Xiaobing
    Zhou, Jiaqi
    APPLIED SOFT COMPUTING, 2023, 148