Parameter Selection of Differential Evolution by another Differential Evolution Algorithm

被引:0
|
作者
Chang, Yen-Ching [1 ,2 ]
机构
[1] Chung Shan Med Univ, Dept Med Informat, Taichung 40201, Taiwan
[2] Chung Shan Med Univ Hosp, Dept Med Imaging, Taichung 40201, Taiwan
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of differential evolution (DE) highly depends on its control parameters, especially for the first proposed simple or standard DE. Control parameters suitable for one objective function are generally not beneficial to another. To automatically find out optimal control parameter settings for different objective functions, we propose a novel technique, parameter selection of DE by another DE algorithm. The conventional DE is one-level DE with various mutation and crossover schemes, and even with different restart mechanisms, and thus our proposed DE can be called a two-level DE algorithm or simply called a two-level algorithm. Experimental results show that our proposed two-level DE can easily find out the true minimum values of four benchmark functions even under different hyperparameters.
引用
收藏
页码:2506 / 2511
页数:6
相关论文
共 50 条
  • [1] Parameter Combination Framework for the Differential Evolution Algorithm
    Zhang, Jinghua
    Dong, Ze
    ALGORITHMS, 2019, 12 (04)
  • [2] An Adaptive Parameter Control for the Differential Evolution Algorithm
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 375 - 382
  • [3] Parameter Identification of PMSM Using Immune Clonal Selection Differential Evolution Algorithm
    Lin, Guohan
    Zhang, Jing
    Liu, Zhaohua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [4] A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution
    Laizhong Cui
    Genghui Li
    Zexuan Zhu
    Zhenkun Wen
    Nan Lu
    Jian Lu
    Soft Computing, 2018, 22 : 6171 - 6190
  • [5] A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution
    Cui, Laizhong
    Li, Genghui
    Zhu, Zexuan
    Wen, Zhenkun
    Lu, Nan
    Lu, Jian
    SOFT COMPUTING, 2018, 22 (18) : 6171 - 6190
  • [6] Dynamic Selection of Parameters in Differential Evolution Algorithm
    Singh, Avjeet
    Kumar, Anoj
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, 2018, : 780 - 786
  • [7] An External Selection Mechanism for Differential Evolution Algorithm
    Zhang, Haigang
    Wang, Da
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [8] A new selection operator for differential evolution algorithm
    Zeng, Zhiqiang
    Zhang, Min
    Chen, Tao
    Hong, Zhiyong
    KNOWLEDGE-BASED SYSTEMS, 2021, 226
  • [9] Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution
    Wang, Minghao
    Ma, Yongjie
    Wang, Peidi
    INFORMATION SCIENCES, 2022, 607 : 1136 - 1157
  • [10] An Improved Differential Evolution Algorithm Based on Adaptive Parameter
    Huang, Zhehuang
    Chen, Yidong
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2013, 2013