Parameter Selection of Differential Evolution by another Differential Evolution Algorithm

被引:0
|
作者
Chang, Yen-Ching [1 ,2 ]
机构
[1] Chung Shan Med Univ, Dept Med Informat, Taichung 40201, Taiwan
[2] Chung Shan Med Univ Hosp, Dept Med Imaging, Taichung 40201, Taiwan
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of differential evolution (DE) highly depends on its control parameters, especially for the first proposed simple or standard DE. Control parameters suitable for one objective function are generally not beneficial to another. To automatically find out optimal control parameter settings for different objective functions, we propose a novel technique, parameter selection of DE by another DE algorithm. The conventional DE is one-level DE with various mutation and crossover schemes, and even with different restart mechanisms, and thus our proposed DE can be called a two-level DE algorithm or simply called a two-level algorithm. Experimental results show that our proposed two-level DE can easily find out the true minimum values of four benchmark functions even under different hyperparameters.
引用
收藏
页码:2506 / 2511
页数:6
相关论文
共 50 条
  • [21] Adaptive Differential Evolution Algorithm and its application to parameter estimation
    Wang, Hailun
    Wang, Wanliang
    Zheng, Jianwei
    2014 INTERNATIONAL CONFERENCE ON MECHATRONICS AND CONTROL (ICMC), 2014, : 1671 - 1675
  • [22] Kinetic Model Parameter Estimation by Hybrid Differential Evolution Algorithm
    Zhao Chao
    Xu Qiaoling
    An Aimin
    Li Xuelai
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1788 - 1793
  • [23] Modified Differential Evolution Algorithm for Parameter Estimation in Mathematical Models
    Ali, Musrrat
    Pant, Millie
    Abraham, Ajith
    Snasel, Vaclav
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [24] Parameter Estimation of a Space Radiator using Differential Evolution Algorithm
    Das, Ranjan
    2016 NINTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2016, : 55 - 60
  • [25] PSO-Tuned Control Parameter in Differential Evolution Algorithm
    Si, Tapas
    Jana, Nanda Dulal
    Sil, Jaya
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 417 - 424
  • [26] Parameter Estimation of Synchronous Machines by Using the Differential Evolution Algorithm
    Makela, Olli
    Repo, Anna-Kaisa
    Arkkio, Antero
    2009 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, VOLS 1-3, 2009, : 1375 - 1380
  • [27] SCJADE: Yet Another State-of-the-Art Differential Evolution Algorithm
    Xu, Zhe
    Gao, Shangce
    Yang, Haichuan
    Lei, Zhenyu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2021, 16 (04) : 644 - 646
  • [28] A novel differential evolution algorithm for global search and sensor selection
    Lu, Feng
    Gao, Liqun
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2215 - 2220
  • [29] Multi-variant differential evolution algorithm for feature selection
    Hassan, Somaia
    Hemeida, Ashraf M.
    Alkhalaf, Salem
    Mohamed, Al-Attar
    Senjyu, Tomonobu
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] An Island Memetic Differential Evolution Algorithm for the Feature Selection Problem
    Marinaki, Magdalene
    Marinakis, Yannis
    NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2013), 2014, 512 : 29 - 42