MEASUREMENT OF IRON TRANSPORT IN THE TFTR TOKAMAK BY CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY

被引:14
|
作者
STRATTON, BC
SYNAKOWSKI, EJ
EFTHIMION, PC
FONCK, RJ
HILL, KW
HULSE, RA
JOHNSON, DW
PARK, H
TAYLOR, G
TIMBERLAKE, J
机构
[1] Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ
[2] Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, WI
关键词
D O I
10.1088/0029-5515/31/1/015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport of iron in TFTR discharges heated by 6.7 MW of co-injected neutral beam power has been studied by spatially resolved charge exchange recombination spectroscopy in the visible region of the spectrum. The time evolutions of the densities of Fe24+ and Fe23+ ions following injection of iron are modelled by the neoclassical flux plus a moderately hollow diffusivity, increasing linearly from 1.3 m2/s on axis to 2.4 m2/s at the plasma edge. For r/a > 0.5, the iron diffusively is significantly smaller than the helium diffusivity measured in identical discharges, while it is larger in the region immediately surrounding the plasma axis.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
  • [21] CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak
    Serov, S. V.
    Tugarinov, S. N.
    Klyuchnikov, L. A.
    Krupin, V. A.
    von Hellermann, M.
    PLASMA PHYSICS REPORTS, 2017, 43 (12) : 1123 - 1131
  • [22] THE TFTR CHARGE-EXCHANGE DIAGNOSTIC SOFTWARE SYSTEMS
    LAGIN, L
    MEDLEY, S
    BERGIN, W
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1985, 32 (04) : 1268 - 1271
  • [23] CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY AS A PLASMA DIAGNOSTIC-TOOL
    FONCK, RJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (05): : 885 - 890
  • [24] MULTICHORDAL CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY ON DOUBLET-III
    SERAYDARIAN, RP
    BURRELL, KH
    KAHN, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (05): : 872 - 872
  • [25] THE DEDUCTION OF LOW-Z ION TEMPERATURE AND DENSITIES IN THE JET TOKAMAK USING CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY
    BOILEAU, A
    VONHELLERMANN, M
    HORTON, LD
    SPENCE, J
    SUMMERS, HP
    PLASMA PHYSICS AND CONTROLLED FUSION, 1989, 31 (05) : 779 - 804
  • [26] Charge exchange recombination spectroscopy on the T-10 tokamak
    Klyuchnikov, L. A.
    Krupin, V. A.
    Nurgaliev, M. R.
    Korobov, K. V.
    Nemets, A. R.
    Dnestrovskij, A. Yu.
    Tugarinov, S. N.
    Serov, S. V.
    Naumenko, N. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (05):
  • [27] Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak
    Ding Bo-Jiang
    Sakamoto Yoshiteru
    Miura Yukitoshi
    CHINESE PHYSICS, 2007, 16 (11): : 3434 - 3442
  • [28] Development of the charge exchange recombination spectroscopy and the beam emission spectroscopy on the EAST tokamak
    Li, Y. Y.
    Fu, J.
    Lyu, B.
    Du, X. W.
    Li, C. Y.
    Zhang, Y.
    Yin, X. H.
    Yu, Y.
    Wang, Q. P.
    von Hellermann, M.
    Shi, Y. J.
    Ye, M. Y.
    Wan, B. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [29] CHARGE-EXCHANGE AS AN IMPURITY RECOMBINATION MECHANISM
    HULSE, RA
    POST, DE
    MIKKELSEN, DR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1004 - 1005
  • [30] Fast charge exchange recombination spectroscopy on HuanLiu-2A tokamak
    He, X. X.
    Yu, D. L.
    Yan, L. W.
    Liu, L.
    Chen, W. J.
    Wei, Y. L.
    He, X. F.
    Ma, Q.
    Shi, Z. B.
    Liu, Yi
    Yang, Q. W.
    Xu, M.
    Duan, X. R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (05):