Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

被引:0
|
作者
Lee, Hyo-Jung [1 ]
Kim, Peol-A [2 ]
Park, Mira [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] KFDA, Pharmaceut & Med Devices Res Dept, Seoul, South Korea
[3] Eulji Univ, Dept Prevent Med, Daejeon 301832, South Korea
基金
新加坡国家研究基金会;
关键词
Time-course microarray data; pharmacokinetic parameter; clustering;
D O I
10.5351/KJAS.2011.24.4.623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [41] TrackSOM: Mapping immune response dynamics through clustering of time-course cytometry data
    Putri, Givanna H.
    Chung, Jonathan
    Edwards, Davis N.
    Marsh-Wakefield, Felix
    Koprinska, Irena
    Dervish, Suat
    King, Nicholas J. C.
    Ashhurst, Thomas M.
    Read, Mark N.
    CYTOMETRY PART A, 2023, 103 (01) : 54 - 70
  • [42] On Gene Ranking Using Replicated Microarray Time Course Data
    Tai, Yu Chuan
    Speed, Terence P.
    BIOMETRICS, 2009, 65 (01) : 40 - 51
  • [43] Time-course microarray transcriptome data of in vitro cultured testes and age-matched in vivo testes
    Abe, Takeru
    Nishimura, Hajime
    Sato, Takuya
    Suzuki, Harukazu
    Ogawa, Takehiko
    Suzuki, Takahiro
    DATA IN BRIEF, 2020, 33
  • [44] Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
    Jonnalagadda, Sudhakar
    Srinivasan, Rajagopalan
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [45] Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
    Sudhakar Jonnalagadda
    Rajagopalan Srinivasan
    BMC Bioinformatics, 9
  • [46] Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments
    Tianqing Liu
    Nan Lin
    Ningzhong Shi
    Baoxue Zhang
    BMC Bioinformatics, 10
  • [47] Multiple Testing for Pattern Identification, With Applications to Microarray Time-Course Experiments
    Sun, Wenguang
    Wei, Zhi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 73 - 88
  • [48] Bayesian models for two-sample time-course microarray experiments
    Angelini, Claudia
    De Canditiis, Daniela
    Pensky, Marianna
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (05) : 1547 - 1565
  • [49] Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments
    Liu, Tianqing
    Lin, Nan
    Shi, Ningzhong
    Zhang, Baoxue
    BMC BIOINFORMATICS, 2009, 10
  • [50] A modified correlation coefficient based similarity measure for clustering time-course gene expression data
    Son, Young Sook
    Baek, Jangsun
    PATTERN RECOGNITION LETTERS, 2008, 29 (03) : 232 - 242