Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

被引:0
|
作者
Lee, Hyo-Jung [1 ]
Kim, Peol-A [2 ]
Park, Mira [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] KFDA, Pharmaceut & Med Devices Res Dept, Seoul, South Korea
[3] Eulji Univ, Dept Prevent Med, Daejeon 301832, South Korea
基金
新加坡国家研究基金会;
关键词
Time-course microarray data; pharmacokinetic parameter; clustering;
D O I
10.5351/KJAS.2011.24.4.623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [31] A bayesian approach to estimation and testing in time-course microarray experiments
    Angelini, Claudia
    De Canditiis, Daniela
    Mutarelli, Margherita
    Pensky, Marianna
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2007, 6
  • [32] Statistical Analysis of a Small Scale Time-Course Microarray Experiment
    Lee, Keun-Young
    Yang, Sang-Hwa
    Kim, Byung-Soo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (01) : 65 - 80
  • [33] Analysis of un-replicated time-course microarray experiments
    Luchini, A
    Callegaro, A
    Bicciato, S
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S12 - S12
  • [34] Testing the significance of cell-cycle patterns in time-course microarray data using nonparametric quadratic inference functions
    Tsai, Guei-Feng
    Qu, Annie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1387 - 1398
  • [35] A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data
    Thomas, Reuben
    Paredes, Carlos J.
    Mehrotra, Sanjay
    Hatzimanikatis, Vassily
    Papoutsakis, Eleftherios T.
    BMC BIOINFORMATICS, 2007, 8
  • [36] Dynamic Gene Regulatory Network Analysis Using Saccharomyces cerevisiae Large-Scale Time-Course Microarray Data
    Zhang, L.
    Wu, H. C.
    Lin, J. Q.
    Chan, S. C.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017,
  • [37] A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data
    Reuben Thomas
    Carlos J Paredes
    Sanjay Mehrotra
    Vassily Hatzimanikatis
    Eleftherios T Papoutsakis
    BMC Bioinformatics, 8
  • [38] Clustering of time-course gene expression data using a mixed-effects model with B-splines
    Luan, YH
    Li, HZ
    BIOINFORMATICS, 2003, 19 (04) : 474 - 482
  • [39] Pattern Browsing and Query Adjustment for the Exploratory Analysis and Cooperative Visualisation of Microarray Time-Course Data
    Craig, Paul
    Cannon, Alan
    Kennedy, Jessie
    Kukla, Robert
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, 2010, 6240 : 199 - 206
  • [40] Identification of Differentially Expressed Genes for Time-Course Microarray Data Based on Modified RM ANOVA
    ElBakry, Ola
    Ahmad, M. Omair
    Swamy, M. N. S.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (02) : 451 - 466