EXTENDED STATES IN ONE-DIMENSIONAL LATTICES - APPLICATION TO THE QUASI-PERIODIC COPPER-MEAN CHAIN

被引:71
|
作者
SIL, S
KARMAKAR, SN
MOITRA, RK
CHAKRABARTI, A
机构
[1] UNIV BRISTOL,HH WILLS PHYS LAB,THEORY GRP,BRISTOL BS8 1TL,AVON,ENGLAND
[2] SCOTTISH CHURCH COLL,DEPT PHYS,CALCUTTA 700006,INDIA
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevB.48.4192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The question of the conditions under which one-dimensional systems support extended electronic eigenstates is addressed in a very general context. Using real-space renormalization-group arguments we discuss the precise criteria for determining the entire spectrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [J. Q. You, J. R. Yan, T. Xie, X. Zeng, and J. X. Zhong, J. Phys.: Condens. Matter 3, 7255 (1991)]: we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.
引用
收藏
页码:4192 / 4195
页数:4
相关论文
共 50 条
  • [41] ON THE NATURE OF EIGENSTATES OF QUASI-PERIODIC LATTICES IN ONE DIMENSION
    CHAKRABARTI, A
    KARMAKAR, SN
    MOITRA, RK
    PHYSICS LETTERS A, 1992, 168 (04) : 301 - 304
  • [42] Localization of the discrete one-dimensional quasi-periodic Schrödinger operators
    Refai, Walid
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10435 - 10443
  • [43] QUANTUM ENERGY-SPECTRA AND ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    MACHIDA, K
    FUJITA, M
    PHYSICAL REVIEW B, 1986, 34 (10): : 7367 - 7370
  • [44] ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC LATTICES - GREENS-FUNCTION RENORMALIZATION-GROUP APPROACH
    ZHONG, JX
    YAN, JR
    YOU, JQ
    YAN, XH
    MEI, YP
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 91 (01): : 127 - 133
  • [45] Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures
    Aissaoui, M.
    Zaghdoudi, J.
    Kanzari, M.
    Rezig, B.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 59 : 69 - 83
  • [46] One-dimensional quasi-periodic Schrodinger operators - Dynamical systems and spectral theory
    Eliasson, LH
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 1998, 168 : 178 - 190
  • [47] Spectral analysis of the Fibonacci-class one-dimensional quasi-periodic structures
    Golmohammadi, S.
    Moravvej-Farshi, M. K.
    Rostami, A.
    Zarifkar, A.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2007, 75 : 69 - 84
  • [48] Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals
    Wu, Ji-jiang
    Gao, Jin-xia
    OPTIK, 2012, 123 (11): : 986 - 988
  • [49] Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum
    Eliasson, LH
    ACTA MATHEMATICA, 1997, 179 (02) : 153 - 196
  • [50] Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal
    Qingdao Key Laboratory of Terahertz Technology, College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao
    266510, China
    Opt Commun, (168-173):