ON THE NATURE OF EIGENSTATES OF QUASI-PERIODIC LATTICES IN ONE DIMENSION

被引:25
|
作者
CHAKRABARTI, A [1 ]
KARMAKAR, SN [1 ]
MOITRA, RK [1 ]
机构
[1] SCOTTISH CHURCH COLL,DEPT PHYS,CALCUTTA 700006,INDIA
关键词
D O I
10.1016/0375-9601(92)91136-F
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We re-examine the conventional idea of determining the nature of the electronic eigenfunctions (extended, critical or localised) of a Fibonacci lattice from a study of the invariant associated with the trace map. We demonstrate that this is insufficient, and a more detailed study of the renormalisation group transformation itself is required to ascertain the nature of the eigenfunctions. Suitable examples are provided.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 50 条
  • [1] ELECTRONS ON ONE-DIMENSIONAL QUASI-PERIODIC LATTICES
    FUJITA, M
    MACHIDA, K
    SYNTHETIC METALS, 1987, 19 (1-3) : 39 - 44
  • [2] Wave transmission in quasi-periodic lattices
    Moscatelli, Marco
    Comi, Claudia
    Marigo, Jean-Jacques
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2279):
  • [3] On the failure resistance of quasi-periodic lattices
    Glacet, Arthur
    Rethore, Julien
    Tanguy, Anne
    Morestin, Fabrice
    SCRIPTA MATERIALIA, 2018, 156 : 23 - 26
  • [4] Exponential localization in one-dimensional quasi-periodic optical lattices
    Modugno, Michele
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [5] THEORY OF QUASI-PERIODIC LATTICES .1. SCALING TRANSFORMATION FOR A QUASI-PERIODIC LATTICE
    IGUCHI, K
    PHYSICAL REVIEW B, 1991, 43 (07): : 5915 - 5918
  • [6] Fractal dimension of quasi-periodic orbits
    Shang, PJ
    Widder, K
    APPLIED MATHEMATICS LETTERS, 2001, 14 (08) : 969 - 973
  • [7] The fractal dimension of quasi-periodic orbits
    Rynne, BP
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 1467 - 1471
  • [8] Lasing in quasi-periodic and aperiodic plasmon lattices
    Schokker, A. Hinke
    Koenderink, A. Femius
    OPTICA, 2016, 3 (07): : 686 - 693
  • [9] Quasi-periodic lattices: Pattern matters too
    Somera, Audrey
    Poncelet, Martin
    Auffray, Nicolas
    Rethore, Julien
    SCRIPTA MATERIALIA, 2022, 209
  • [10] DYNAMIC SYSTEM RELATED TO QUASI-PERIODIC SCHRODINGER-EQUATIONS IN ONE DIMENSION
    KOHMOTO, M
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 791 - 796