MAXIMUM-ENTROPY IN THE HAMBURGER MOMENTS PROBLEM

被引:12
|
作者
TAGLIANI, A
机构
[1] Politecnico di Milano, Dipto. di Matematica, 20133 Milano, Piazza Leonardo da Vinci
关键词
D O I
10.1063/1.530796
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The maximum-entropy approach to the solution of the Hamburger inverse problem of moments, in which one seeks to recover a positive density function p(x) [where x epsilon(-infinity, +infinity)] from the values of a finite N + 1 of its moments, is considered. The obtained results show that unexpected upper bounds for the moments do not exist in the general Hamburger finite moment problem, unlike in the symmetric case previously considered. Some physical examples, illustrating the use of partial information to determine the approximate function, are presented.
引用
收藏
页码:5087 / 5096
页数:10
相关论文
共 50 条
  • [31] MAXIMUM-ENTROPY THEORY
    LIVESEY, AK
    SKILLING, J
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1985, 41 (MAR): : 113 - 122
  • [32] Maximum entropy and the problem of moments: A stable algorithm
    Bandyopadhyay, K
    Bhattacharya, AK
    Biswas, P
    Drabold, DA
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [33] MAXIMUM-ENTROPY IN CRYSTALLOGRAPHY
    BRYAN, RK
    MAXIMUM ENTROPY AND BAYESIAN METHODS /, 1989, 36 : 213 - 224
  • [34] CLASSIC MAXIMUM-ENTROPY
    SKILLING, J
    MAXIMUM ENTROPY AND BAYESIAN METHODS /, 1989, 36 : 45 - 52
  • [35] INTRODUCTION TO MAXIMUM-ENTROPY
    SIVIA, DS
    ADVANCED NEUTRON SOURCES 1988, 1989, 97 : 245 - 256
  • [36] MAXIMUM-ENTROPY AND THE LOTTERY
    STERN, H
    COVER, TM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 980 - 985
  • [37] MAXIMUM-ENTROPY PSYCHOPHYSICS
    KILLEEN, PR
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1989, 27 (06) : 514 - 514
  • [38] THE MAXIMUM-ENTROPY METHOD
    SMITH, DJ
    MARCONI REVIEW, 1981, 44 (222): : 137 - 158
  • [39] INTRODUCTION TO MAXIMUM-ENTROPY
    SIVIA, DS
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1989, (97): : 245 - 256
  • [40] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    KYBERNETES, 1987, 16 (02) : 125 - 125