MAXIMUM-ENTROPY IN THE HAMBURGER MOMENTS PROBLEM

被引:12
|
作者
TAGLIANI, A
机构
[1] Politecnico di Milano, Dipto. di Matematica, 20133 Milano, Piazza Leonardo da Vinci
关键词
D O I
10.1063/1.530796
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The maximum-entropy approach to the solution of the Hamburger inverse problem of moments, in which one seeks to recover a positive density function p(x) [where x epsilon(-infinity, +infinity)] from the values of a finite N + 1 of its moments, is considered. The obtained results show that unexpected upper bounds for the moments do not exist in the general Hamburger finite moment problem, unlike in the symmetric case previously considered. Some physical examples, illustrating the use of partial information to determine the approximate function, are presented.
引用
收藏
页码:5087 / 5096
页数:10
相关论文
共 50 条
  • [21] THE ENTROPY OF THE MAXIMUM-ENTROPY DISTRIBUTION
    THEIL, H
    ECONOMICS LETTERS, 1980, 5 (02) : 145 - 148
  • [22] MAXIMUM-ENTROPY - A NEW APPROACH TO THE CRYSTALLOGRAPHIC PHASE PROBLEM
    NARAYAN, R
    NITYANANDA, R
    VANI, GV
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1983, 92 (4-5): : 341 - 358
  • [23] Generalized scaling for the constrained maximum-entropy sampling problem
    Chen, Zhongzhu
    Fampa, Marcia
    Lee, Jon
    MATHEMATICAL PROGRAMMING, 2024,
  • [24] A BAYESIAN MAXIMUM-ENTROPY VIEW TO THE SPATIAL ESTIMATION PROBLEM
    CHRISTAKOS, G
    MATHEMATICAL GEOLOGY, 1990, 22 (07): : 763 - 777
  • [25] Generalized Scaling for the Constrained Maximum-Entropy Sampling Problem
    Chen, Zhongzhu
    Fampa, Marcia
    Lee, Jon
    SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA23, 2023, : 110 - 118
  • [26] MAXIMUM-ENTROPY METHODS
    PONMAN, TJ
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1984, 221 (01): : 72 - 76
  • [27] MAXIMUM-ENTROPY HISTOGRAMS
    RODRIGUEZ, CC
    VANRYZIN, J
    STATISTICS & PROBABILITY LETTERS, 1985, 3 (03) : 117 - 120
  • [28] QUANTIFIED MAXIMUM-ENTROPY
    SKILLING, J
    AMERICAN LABORATORY, 1992, 24 (15) : J32 - M32
  • [29] THE MAXIMUM-ENTROPY METHOD
    SELIGMAN, TH
    LECTURE NOTES IN PHYSICS, 1985, 236 : 78 - 91
  • [30] THE PRINCIPLE OF MAXIMUM-ENTROPY
    GUIASU, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1985, 7 (01): : 42 - 48