PRESS: A Novel Framework of Trajectory Compression in Road Networks

被引:97
|
作者
Song, Renchu [1 ,2 ]
Sun, Weiwei [1 ,2 ]
Zheng, Baihua [3 ]
Zheng, Yu [4 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Data Sci, Shanghai, Peoples R China
[3] Singapore Management Univ, Singapore, Singapore
[4] Microsoft Res, Beijing, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2014年 / 7卷 / 09期
基金
中国国家自然科学基金;
关键词
D O I
10.14778/2732939.2732940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 50 条
  • [31] Spatio-Temporal Trajectory Similarity Learning in Road Networks
    Fang, Ziquan
    Du, Yuntao
    Zhu, Xinjun
    Hu, Danlei
    Chen, Lu
    Gao, Yunjun
    Jensen, Christian S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 347 - 356
  • [32] A new trajectory indexing scheme for moving objects on road networks
    Chang, Jae-Woo
    Um, Jung-Ho
    Lee, Wang-Chien
    FLEXIBLE AND EFFICIENT INFORMATION HANDLING, 2006, 4042 : 291 - 294
  • [33] TRAJECTORY SIMILARITY ASSESSMENT ON ROAD NETWORKS VIA EMBEDDING LEARNING
    Zhang, Rui
    Rong, Yacheng
    Wu, Zilong
    Zhuo, Yifan
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2020), 2020, : 1 - 8
  • [34] A Map-Matching Aware Framework For Road Network Compression
    Hendawi, Abdeltawab M.
    Khot, Amruta
    Rustum, Aqeel
    Basalamah, Anas
    Teredesai, Ankur
    Ali, Mohamed
    2015 16TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, VOL 1, 2015, : 307 - 310
  • [35] A novel framework for analysing the road bumps problem
    Adeyefa, OA
    Salau, TAO
    Oke, SA
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 4, PTS A and B, 2004, 4 : 135 - 143
  • [36] Differential-Privacy Preserving Trajectory Data Publishing for Road Networks
    Li, Songyuan
    Tian, Hui
    Shen, Hong
    Sang, Yingpeng
    Communications in Computer and Information Science, 2023, 1863 CCIS : 558 - 571
  • [37] Trajectory Forecasts with Uncertainties of Vulnerable Road Users by Means of Neural Networks
    Zernetsch, Stefan
    Reichert, Hannes
    Kress, Viktor
    Doll, Konrad
    Sick, Bernhard
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 810 - 815
  • [38] Matching the high sampled trajectory with road networks based on path increment
    Wang H.
    Liu Y.
    Li S.
    Liang B.
    He Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (02): : 329 - 340
  • [39] Grid-Based Whole Trajectory Clustering in Road Networks Environment
    Wang, Fangshu
    Wang, Shuai
    Niu, Xinzheng
    Zhu, Jiahui
    Chen, Ting
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [40] Multidimensional graph transformer networks for trajectory prediction in urban road intersections
    Quan, Xuefeng
    Luo, Dening
    Yang, Qiang
    Xia, Tianfei
    Zhang, Gexiang
    JOURNAL OF MEMBRANE COMPUTING, 2025, 7 (01) : 1 - 13