PRESS: A Novel Framework of Trajectory Compression in Road Networks

被引:97
|
作者
Song, Renchu [1 ,2 ]
Sun, Weiwei [1 ,2 ]
Zheng, Baihua [3 ]
Zheng, Yu [4 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Data Sci, Shanghai, Peoples R China
[3] Singapore Management Univ, Singapore, Singapore
[4] Microsoft Res, Beijing, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2014年 / 7卷 / 09期
基金
中国国家自然科学基金;
关键词
D O I
10.14778/2732939.2732940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 50 条
  • [21] A Framework for Efficient and Convenient Evaluation of Trajectory Compression Algorithms
    Muckell, Jonathan
    Olsen, Paul W., Jr.
    Hwang, Jeong-Hyon
    Ravi, S. S.
    Lawson, Catherine T.
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING FOR GEOSPATIAL RESEARCH AND APPLICATION (COM.GEO), 2013, : 24 - 31
  • [22] Multi-Vehicle Trajectory Optimisation On Road Networks
    Gun, Philip
    Hill, Andrew
    Vujanic, Robin
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2025 - 2031
  • [23] Trembr: Exploring Road Networks for Trajectory Representation Learning
    Fu, Tao-Yang
    Lee, Wang-Chien
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (01)
  • [24] ROAD: A New Spatial Object Search Framework for Road Networks
    Lee, Ken C. K.
    Lee, Wang-Chien
    Zheng, Baihua
    Tian, Yuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (03) : 547 - 560
  • [25] A method for the trajectory privacy protection based on the segmented fake trajectory under road networks
    Dai, Jiazhu
    Hua, Liang
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING ICISCE 2015, 2015, : 13 - 17
  • [26] A Novel Image Compression Framework at Edges
    Ye, Long
    Liu, Qianhan
    Zhong, Wei
    Zhang, Qin
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [27] Spatio-temporal compression of trajectories in road networks
    Iulian Sandu Popa
    Karine Zeitouni
    Vincent Oria
    Ahmed Kharrat
    GeoInformatica, 2015, 19 : 117 - 145
  • [28] Spatio-temporal compression of trajectories in road networks
    Popa, Iulian Sandu
    Zeitouni, Karine
    Oria, Vincent
    Kharrat, Ahmed
    GEOINFORMATICA, 2015, 19 (01) : 117 - 145
  • [29] A novel compression approach for truck GPS trajectory data
    Liu, Sijing
    Chen, Gang
    Wei, Long
    Li, Guoqi
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (01) : 74 - 83
  • [30] Label-Based Trajectory Clustering in Complex Road Networks
    Niu, Xinzheng
    Chen, Ting
    Wu, Chase Q.
    Niu, Jiajun
    Li, Yuran
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (10) : 4098 - 4110