AN EFFICIENT ALGORITHM FOR TESTING THE QUALITY OF THE OUTPUT OF RANDOM NUMBER GENERATORS

被引:0
|
作者
SHERIF, YS
DEAR, RG
机构
[1] California State University, Fullerton
关键词
RANDOM NUMBER GENERATOR; WALSH TRANSFORM; KOLMOGOROV-SMIRNOV;
D O I
10.1016/0965-9978(95)00013-M
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an efficient method and a computer program utilizing Walsh functions to test the quality of the output of a random number generator. The computer program is written in ZBasic and consists of six segments: (1) PMMLCG RANDOM NUMBER GENERATOR FUNCTION - This segment defines the portable Prime Modulus Multiplicative Linear Congruential Generator that is used as part of the Composite Sherif Dear (CSD) Random Number Generator, which is under study and testing in this paper; (2) INITIAL VARIABLE INPUT/HEADER OUTPUT - This segment requests user input for the experiment and prepares the output file with header information; (3) CSD RANDOM NUMBER GENERATOR SAMPLES - This segment generates multiple samples of the CSD Random Number Generator each with the desired sample size. The generated values are offset by 0.5; (4) DETERMINE THE WALSH TRANSFORM - This segment determines the Walsh Transform using a Manz Sequency Ordered In-Place Algorithm for the given sample; (5) DETERMINE THE KOLMOGOROV-SMIRNOV SAMPLE STATISTIC This segment computes the Kolmogorov-Smirnov sample statistic on the scaled Walsh Transform; (6) SAMPLING COMPLETE-SUMMARIZE RESULTS This segment summarizes the results for all samples and places the results into an output file. The Walsh functions based test shows that the output of the (CDS) random number generator satisfies the criteria of good random number generators.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [31] Review of Methodologies and Metrics for Assessing the Quality of Random Number Generators
    Crocetti, Luca
    Nannipieri, Pietro
    Di Matteo, Stefano
    Fanucci, Luca
    Saponara, Sergio
    ELECTRONICS, 2023, 12 (03)
  • [32] Searching for evidence of algorithmic randomness and incomputability in the output of quantum random number generators
    Kavulich, John T.
    Van Deren, Brennan P.
    Schlosshauer, Maximilian
    PHYSICS LETTERS A, 2021, 388
  • [34] A Practical Approach to Testing Random Number Generators in Computer Algebra Systems
    Gevorkyan, M. N.
    Demidova, A., V
    Korol'kova, A., V
    Kulyabov, D. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (01) : 65 - 73
  • [35] A Practical Approach to Testing Random Number Generators in Computer Algebra Systems
    M. N. Gevorkyan
    A. V. Demidova
    A. V. Korol’kova
    D. S. Kulyabov
    Computational Mathematics and Mathematical Physics, 2020, 60 : 65 - 73
  • [36] Testing the Tests: Using Random Number Generators to Improve Empirical Tests
    Leopardi, Paul
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 501 - 512
  • [37] Efficient Pseudo-Random Number Generators for Wireless Sensor Networks
    Ahmed, Rana E.
    2016 IEEE 59TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2016, : 197 - 200
  • [38] Can the SHA-3 Algorithm be used for the Construction of Efficient and Robust Hardware Cryptographic Random Number Generators?
    Crocetti, Luca
    2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [39] Highly Efficient Entropy Extraction for True Random Number Generators on FPGAs
    Rozic, Vladimir
    Yang, Bohan
    Dehaene, Wim
    Verbauwhede, Ingrid
    2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015,
  • [40] On the reliability of random number generators
    Dodge, Y
    Melfi, G
    MODELLING AND SIMULATION 2002, 2002, : 142 - 144