AN EFFICIENT ALGORITHM FOR TESTING THE QUALITY OF THE OUTPUT OF RANDOM NUMBER GENERATORS

被引:0
|
作者
SHERIF, YS
DEAR, RG
机构
[1] California State University, Fullerton
关键词
RANDOM NUMBER GENERATOR; WALSH TRANSFORM; KOLMOGOROV-SMIRNOV;
D O I
10.1016/0965-9978(95)00013-M
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an efficient method and a computer program utilizing Walsh functions to test the quality of the output of a random number generator. The computer program is written in ZBasic and consists of six segments: (1) PMMLCG RANDOM NUMBER GENERATOR FUNCTION - This segment defines the portable Prime Modulus Multiplicative Linear Congruential Generator that is used as part of the Composite Sherif Dear (CSD) Random Number Generator, which is under study and testing in this paper; (2) INITIAL VARIABLE INPUT/HEADER OUTPUT - This segment requests user input for the experiment and prepares the output file with header information; (3) CSD RANDOM NUMBER GENERATOR SAMPLES - This segment generates multiple samples of the CSD Random Number Generator each with the desired sample size. The generated values are offset by 0.5; (4) DETERMINE THE WALSH TRANSFORM - This segment determines the Walsh Transform using a Manz Sequency Ordered In-Place Algorithm for the given sample; (5) DETERMINE THE KOLMOGOROV-SMIRNOV SAMPLE STATISTIC This segment computes the Kolmogorov-Smirnov sample statistic on the scaled Walsh Transform; (6) SAMPLING COMPLETE-SUMMARIZE RESULTS This segment summarizes the results for all samples and places the results into an output file. The Walsh functions based test shows that the output of the (CDS) random number generator satisfies the criteria of good random number generators.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [21] Assessing the Quality of Pseudo-Random Number Generators
    Luizi, P. C. S.
    Cruz, F. R. B.
    van de Graaf, J.
    COMPUTATIONAL ECONOMICS, 2010, 36 (01) : 57 - 67
  • [22] Quantum random number generators with entanglement for public randomness testing
    Jacak, Janusz E.
    Jacak, Witold A.
    Donderowicz, Wojciech A.
    Jacak, Lucjan
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] Quantum random number generators with entanglement for public randomness testing
    Janusz E. Jacak
    Witold A. Jacak
    Wojciech A. Donderowicz
    Lucjan Jacak
    Scientific Reports, 10
  • [24] The time-adaptive statistical testing for random number generators
    Boris, Ryabko
    Viacheslav, Zhuravlev
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 344 - 347
  • [25] RANDOM NUMBER GENERATORS
    ERMAKOV, SM
    INDUSTRIAL LABORATORY, 1993, 59 (07): : 701 - 705
  • [27] RANDOM NUMBER GENERATORS
    HULL, TE
    DOBELL, AR
    SIAM REVIEW, 1962, 4 (03) : 230 - +
  • [28] Efficient prediction of Marsaglia-Zaman random number generators
    Bach, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1253 - 1257
  • [29] Comparison of Random Number Generators in Particle Swarm Optimization Algorithm
    Ding, Ke
    Tan, Ying
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2664 - 2671
  • [30] Assessing the quality of random number generators through neural networks
    Luis Crespo, Jose
    Gonzalez-Villa, Javier
    Gutierrez, Jaime
    Valle, Angel
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):