Painleve analysis of a variable coefficient Sine-Gordon equation

被引:5
|
作者
DiGarbo, A
Fronzoni, L
机构
[1] CONSORZIO NAZL INTERUNIV FIS MAT,I-56100 PISA,ITALY
[2] CNR,GRP NAZL STRUTTURA MAT,I-56100 PISA,ITALY
关键词
D O I
10.1063/1.166144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a variable coefficient Sine-Gordon (vSG) equation given by theta(tt)-theta(xx)+F(x,t)sin theta=0 where F(x,t) is a real function. To establish if it may be integrable we have performed the standard test of Weiss, Tabor, and Carnevale (WTC). We have got that the (vSG) equation has the Painleve' property (Pp) if the function F(x,t) satisfies a well-defined nonlinear partial differential equation. We have found the general solution of this last equation and, consequently, the functions F(x,t) such that the (VSG) equation possesses the (Pp), are given by F(x,t)=F-1(x+t)F-2(x-t) where F-1(x+t) and F-2(x-t) are arbitrary functions. Using this last result we have obtained some particular solutions of the (VSG) equation. (C) 1995 American Institute of Physics.
引用
收藏
页码:690 / 692
页数:3
相关论文
共 50 条
  • [41] COMMENTS ON THE PERTURBED SINE-GORDON EQUATION
    PAPASTAMATIOU, NJ
    MATSUMOTO, H
    UMEZAWA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2205 - 2207
  • [42] On robust stability of sine-Gordon equation
    Efimov, Denis
    Fridman, Emilia
    Richard, Jean-Pierre
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7001 - 7006
  • [43] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    Science China Mathematics, 1997, (10) : 1028 - 1035
  • [44] POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION
    BEUTLER, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3098 - 3109
  • [45] METHOD FOR SOLVING SINE-GORDON EQUATION
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    PHYSICAL REVIEW LETTERS, 1973, 30 (25) : 1262 - 1264
  • [46] THE GURSA PROBLEM FOR THE SINE-GORDON EQUATION
    SAKHNOVICH, AL
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (12): : 13 - 17
  • [47] Exact solutions to the sine-Gordon equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [48] Analytical solution to sine-Gordon equation
    Eleuch, H.
    Rostovtsev, Y. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [49] CONSERVATION LAWS OF SINE-GORDON EQUATION
    SANUKI, H
    KONNO, K
    PHYSICS LETTERS A, 1974, A 48 (03) : 221 - 222
  • [50] THE SINE-GORDON EQUATION AND THE TRACE METHOD
    ZHENG, WM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : L485 - L489