Painleve analysis of a variable coefficient Sine-Gordon equation

被引:5
|
作者
DiGarbo, A
Fronzoni, L
机构
[1] CONSORZIO NAZL INTERUNIV FIS MAT,I-56100 PISA,ITALY
[2] CNR,GRP NAZL STRUTTURA MAT,I-56100 PISA,ITALY
关键词
D O I
10.1063/1.166144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a variable coefficient Sine-Gordon (vSG) equation given by theta(tt)-theta(xx)+F(x,t)sin theta=0 where F(x,t) is a real function. To establish if it may be integrable we have performed the standard test of Weiss, Tabor, and Carnevale (WTC). We have got that the (vSG) equation has the Painleve' property (Pp) if the function F(x,t) satisfies a well-defined nonlinear partial differential equation. We have found the general solution of this last equation and, consequently, the functions F(x,t) such that the (VSG) equation possesses the (Pp), are given by F(x,t)=F-1(x+t)F-2(x-t) where F-1(x+t) and F-2(x-t) are arbitrary functions. Using this last result we have obtained some particular solutions of the (VSG) equation. (C) 1995 American Institute of Physics.
引用
收藏
页码:690 / 692
页数:3
相关论文
共 50 条
  • [31] HAMILTONIAN STRUCTURE OF SINE-GORDON EQUATION
    BENZA, V
    MONTALDI, E
    PHYSICS LETTERS A, 1976, 56 (05) : 347 - 349
  • [32] Weingarten surfaces and sine-Gordon equation
    Chen, WH
    Li, HZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1028 - 1035
  • [33] ON RECURRENT SOLUTIONS TO THE SINE-GORDON EQUATION
    MURAKAMI, Y
    TAJIRI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (06) : 2207 - 2208
  • [34] Identifiability for Linearized Sine-Gordon Equation
    Ha, J.
    Gutman, S.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 106 - 121
  • [35] Generalized solution of Sine-Gordon equation
    Chadli, Lalla Saadia
    Melliani, Said
    Moujahid, Abdelaziz
    Elomari, M'hamed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 87 - 92
  • [36] On a New Avatar of the Sine-Gordon Equation
    Sakovich, S. Yu
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 62 - 68
  • [37] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [38] Integrable discretizations of the sine-Gordon equation
    Boiti, M
    Pempinelli, F
    Prinari, B
    Spire, A
    INVERSE PROBLEMS, 2002, 18 (05) : 1309 - 1324
  • [39] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):
  • [40] CANONICAL TRANSFORMATION FOR SINE-GORDON EQUATION
    KODAMA, Y
    WADATI, M
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (01): : 342 - 343