INTERSECTING DOMINO TILINGS

被引:0
|
作者
Butler, Steve [1 ]
Horn, Paul [2 ]
Tressler, Eric [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Emory Univ, Math & Comp Sci, Atlanta, GA 30322 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
来源
FIBONACCI QUARTERLY | 2010年 / 48卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider an Erdos-Ko-Rado analog of tilings. Namely, given two tilings of a common region we say that they intersect if they have at least one tile in the same location. We show that for a domino tiling of the 2 x n strip that the largest collection of tilings which pairwise intersect are counted by the Fibonacci numbers. We also solve the problem for tilings of the 3x(2n) strip using dominoes.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [41] ON THE CONNECTIVITY OF SPACES OF THREE-DIMENSIONAL DOMINO TILINGS
    Freire, Juliana
    Klivans, Caroline
    Milet, Pedro
    Saldanha, Nicolau
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (03) : 1579 - 1605
  • [42] Asymptotics of random domino tilings of rectangular Aztec diamonds
    Bufetov, Alexey
    Knizel, Alisa
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1250 - 1290
  • [43] Enumeration of domino tilings of an Aztec rectangle with boundary defects
    Saikia, Manjil P.
    ADVANCES IN APPLIED MATHEMATICS, 2017, 89 : 41 - 66
  • [44] Components of domino tilings under flips in quadriculated tori
    Liu, Qianqian
    Zhang, Yaxian
    Zhang, Heping
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [45] Local move connectedness of domino tilings with diagonal impurities
    Nakano, Fuminiko
    Ono, Hirotaka
    Sadahiro, Taizo
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 1918 - 1931
  • [46] Twenty Vertex model and domino tilings of the Aztec triangle
    Di Francesco, Philippe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [47] Reconstruction of domino tilings-Combinatorial and probabilistic questions
    Bar-Sinai, Yoav
    Berend, Daniel
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 1 - 19
  • [48] Coupled GUE-Minor Processes and Domino Tilings
    Adler, Mark
    van Moerbeke, Pierre
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) : 10987 - 11044
  • [49] The reconstruction of a subclass of domino tilings from two projections
    Frosini, A
    Simi, G
    DISCRETE APPLIED MATHEMATICS, 2005, 151 (1-3) : 154 - 168
  • [50] Local statistics for random domino tilings of the Aztec diamond
    Cohn, H
    Elkies, N
    Propp, J
    DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) : 117 - 166