INTERSECTING DOMINO TILINGS

被引:0
|
作者
Butler, Steve [1 ]
Horn, Paul [2 ]
Tressler, Eric [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Emory Univ, Math & Comp Sci, Atlanta, GA 30322 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
来源
FIBONACCI QUARTERLY | 2010年 / 48卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider an Erdos-Ko-Rado analog of tilings. Namely, given two tilings of a common region we say that they intersect if they have at least one tile in the same location. We show that for a domino tiling of the 2 x n strip that the largest collection of tilings which pairwise intersect are counted by the Fibonacci numbers. We also solve the problem for tilings of the 3x(2n) strip using dominoes.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [31] A Bijection Theorem for Domino Tilings with Diagonal Impurities
    Fumihiko Nakano
    Taizo Sadahiro
    Journal of Statistical Physics, 2010, 139 : 565 - 597
  • [32] Generalizing the divisibility property of rectangle domino tilings
    Tong, Forest
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [33] Scaling limit of domino tilings on a pentagonal domain
    Colomo, Filippo
    Pronko, Andrei G.
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [34] Coupling functions for domino tilings of Aztec diamonds
    Chhita, Sunil
    Young, Benjamin
    ADVANCES IN MATHEMATICS, 2014, 259 : 173 - 251
  • [35] Lambda-determinants and domino-tilings
    Propp, J
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (04) : 871 - 879
  • [36] FROM DOMINO TILINGS TO A NEW MODEL OF COMPUTATION
    CHLEBUS, BS
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 24 - 33
  • [37] Domino tilings and flips in dimensions 4 and higher
    Klivans, Caroline J.
    Saldanha, Nicolau C.
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [38] Random three-dimensional tilings of Aztec octahedra and tetrahedra: An extension of domino tilings
    Randall, D
    Yngve, G
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 636 - 645
  • [39] DOMINO TILINGS OF THE AZTEC DIAMOND WITH DOUBLY PERIODIC WEIGHTINGS
    Berggren, Tomas
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1965 - 2011
  • [40] Components of domino tilings under flips in quadriculated tori
    Liu, Qianqian
    Zhang, Yaxian
    Zhang, Heping
    arXiv, 2023,