DIFFUSION OF A QUANTUM PARTICLE IN TIME-DEPENDENT RANDOM POTENTIAL

被引:0
|
作者
LEBEDEV, NI
SOKOLOFF, DD
KAGANOVICH, AS
机构
[1] PN LEBEDEV PHYS INST,DEPT THEORET PHYS,MOSCOW 117924,USSR
[2] VNIIGEOINFORMSYST,MOSCOW 113105,USSR
[3] MV LOMONOSOV STATE UNIV,DEPT PHYS,MOSCOW 119899,USSR
来源
JOURNAL DE PHYSIQUE I | 1991年 / 1卷 / 09期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Schrodinger equation for a particle moving in random, time-dependent potential with white noise correlation, we prove that perturbation theory result for mean square displacement X approximately t3/2 is asymptotically exact for a large time t. This is in contrast with the same equation with imaginary time.
引用
收藏
页码:1213 / 1215
页数:3
相关论文
共 50 条
  • [41] Resonant particle creation by a time-dependent potential in a nonlocal theory
    Boos, Jens
    Frolov, Valeri P.
    Zelnikov, Andrei
    PHYSICS LETTERS B, 2021, 816
  • [42] Scaling properties for a classical particle in a time-dependent potential well
    Leonel, ED
    McClintock, PVE
    CHAOS, 2005, 15 (03)
  • [43] Dynamical properties of a particle in a classical time-dependent potential well
    Leonel, ED
    da Silva, JKL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 323 (SUPP) : 181 - 196
  • [44] WIGNER FUNCTION OF A RELATIVISTIC PARTICLE IN A TIME-DEPENDENT LINEAR POTENTIAL
    Nagiyev, Sh. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (01) : 1030 - 1037
  • [45] Wigner function of a relativistic particle in a time-dependent linear potential
    Sh. M. Nagiyev
    Theoretical and Mathematical Physics, 2016, 188 : 1030 - 1037
  • [46] Diffusion process with two reflecting barriers in a time-dependent potential
    Mayr, Elisabeth
    Schulz, Michael
    Reineker, Peter
    Pletl, Thomas
    Chvosta, Petr
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [47] Dynamics of a rotating particle under a time-dependent potential:: exact quantum solution from the classical action
    Laroze, David
    Gutierrez, Gonzalo
    Rivera, Rodrigo
    Yanez, Julio M.
    PHYSICA SCRIPTA, 2008, 78 (01)
  • [48] Statistics of finite-time Lyapunov exponents in a random time-dependent potential
    Schomerus, H
    Titov, M
    PHYSICAL REVIEW E, 2002, 66 (06): : 11
  • [49] Quantum-mechanical effects in a linear time-dependent potential
    S. V. Mousavi
    The European Physical Journal D, 2010, 57 : 3 - 7
  • [50] Quantum-classical correspondence of the time-dependent linear potential
    Liang, ML
    Zhang, ZG
    Zhong, KS
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (04) : 397 - 402