DIFFUSION OF A QUANTUM PARTICLE IN TIME-DEPENDENT RANDOM POTENTIAL

被引:0
|
作者
LEBEDEV, NI
SOKOLOFF, DD
KAGANOVICH, AS
机构
[1] PN LEBEDEV PHYS INST,DEPT THEORET PHYS,MOSCOW 117924,USSR
[2] VNIIGEOINFORMSYST,MOSCOW 113105,USSR
[3] MV LOMONOSOV STATE UNIV,DEPT PHYS,MOSCOW 119899,USSR
来源
JOURNAL DE PHYSIQUE I | 1991年 / 1卷 / 09期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Schrodinger equation for a particle moving in random, time-dependent potential with white noise correlation, we prove that perturbation theory result for mean square displacement X approximately t3/2 is asymptotically exact for a large time t. This is in contrast with the same equation with imaginary time.
引用
收藏
页码:1213 / 1215
页数:3
相关论文
共 50 条
  • [21] Transport and time-dependent diffusion of inertial Brownian particle in tri-stable potential
    Yuanyuan Jiao
    Fengzao Yang
    Chunhua Zeng
    The European Physical Journal Plus, 135
  • [22] TIME-DEPENDENT INVARIANTS AND THE TIME-DEPENDENT QUANTUM-MECHANICAL MANY-PARTICLE PROBLEM
    KOHL, H
    DREIZLER, RM
    PHYSICS LETTERS A, 1983, 98 (03) : 95 - 97
  • [23] Relativistic quantum particle in a time-dependent homogeneous field
    Nagiyev, Shakir M.
    Jafarova, Konul Sh
    PHYSICS LETTERS A, 2013, 377 (10-11) : 747 - 752
  • [24] Gompertz growth model in random environment with time-dependent diffusion
    Ghosh H.
    Prajneshu
    Journal of Statistical Theory and Practice, 2017, 11 (4) : 746 - 758
  • [25] Wave functions for a Dirac particle in a time-dependent potential
    Landim, R.R.
    Guedes, I.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (05): : 541011 - 541013
  • [26] Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential
    Blickle, V
    Speck, T
    Helden, L
    Seifert, U
    Bechinger, C
    PHYSICAL REVIEW LETTERS, 2006, 96 (07)
  • [27] Wave functions for a Dirac particle in a time-dependent potential
    Landim, RR
    Guedes, I
    PHYSICAL REVIEW A, 2000, 61 (05): : 3
  • [28] Scaling dynamics for a particle in a time-dependent potential well
    da Costa, Diogo Ricardo
    Silva, Mario Roberto
    de Oliveira, Juliano A.
    Leonel, Edson D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (13) : 3607 - 3615
  • [29] Diffusion in the time-dependent double-well potential
    Subrt, E
    Chvosta, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (02) : 125 - 139
  • [30] AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD
    LEWIS, HR
    RIESENFELD, WB
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) : 1458 - +