Shape Preserving Properties for q-Bernstein-Stancu Operators

被引:2
|
作者
Wang, Yali [1 ]
Zhou, Yinying [1 ]
机构
[1] Langfang Teachers Coll, Sch Math & Informat Sci, Liangfang 065000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/603694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate shape preserving for q-Bernstein-Stancu polynomials B-n(q,alpha)(f; x) introduced by Nowak in 2009. When alpha= 0, B-n(q,alpha)(f; x) reduces to the well- known q-Bernstein polynomials introduced by Phillips in 1997; when q = 1, B-n(q,alpha)(f;x) reduces to Bernstein-Stancu polynomials introduced by Stancu in 1968; when q = 1, alpha = 0, we obtain classical Bernstein polynomials. We prove that basic B-n(q,alpha)(f; x) basis is a normalized totally positive basis on [0, 1] and q-Bernstein-Stancu operators are variationdiminishing, monotonicity preserving and convexity preserving on [0, 1].
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Shape-preserving properties of a new family of generalized Bernstein operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [32] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2015
  • [33] Shape preserving properties of generalized Bernstein operators on Extended Chebyshev spaces
    Aldaz, J. M.
    Kounchev, O.
    Render, H.
    NUMERISCHE MATHEMATIK, 2009, 114 (01) : 1 - 25
  • [34] Shape preserving properties of generalized Bernstein operators on Extended Chebyshev spaces
    J. M. Aldaz
    O. Kounchev
    H. Render
    Numerische Mathematik, 2009, 114 : 1 - 25
  • [35] A new representation and shape-preserving properties of perturbed Bernstein operators
    Acu, Ana-Maria
    Mutlu, Gokhan
    Cekim, Bayram
    Yazici, Serdal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (01) : 5 - 14
  • [36] Shape-preserving properties of a new family of generalized Bernstein operators
    Qing-Bo Cai
    Xiao-Wei Xu
    Journal of Inequalities and Applications, 2018
  • [37] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [38] APPROXIMATION PROPERTIES OF CERTAIN BERNSTEIN-STANCU TYPE OPERATORS
    Acu, Ana-Maria
    Dogru, Ogun
    Muraru, Carmen Violeta
    Radu, Voichita Adriana
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 687 - 702
  • [39] Approximation Properties of Generalized λ-Bernstein-Stancu-Type Operators
    Cai, Qing-Bo
    Torun, Gulten
    Dinlemez Kantar, Ulku
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [40] On Approximation Properties of a Stancu Generalization of Szasz–Mirakyan–Bernstein Operators
    Tunç T.
    Fedakar B.
    Journal of Mathematical Sciences, 2022, 260 (5) : 700 - 710