A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology

被引:7
|
作者
Kunisch, Karl [1 ]
Nagaiah, Chamakuri [1 ]
Wagner, Marcus [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Univ Leipzig, Dept Math, D-04009 Leipzig, Germany
基金
奥地利科学基金会;
关键词
PDE constrained optimization; Monodomain equations; Rogers-McCulloch model; Necessary optimality conditions; Numerical solution; Parallelization; Receding horizon strategy;
D O I
10.1007/s00791-012-0182-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work addresses an optimal control approach for a model problem in cardiac electrophysiology with the goal of extinction of a reentry phenomenon. After the introduction of the mathematical model, the derivation of the optimality system, the description of its discretization and a numerical feasibility study in a parallel environment are provided.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 50 条
  • [41] Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology
    Nagaiah, Chamakuri
    Kunisch, Karl
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (01) : 53 - 65
  • [42] A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems
    Benner, Peter
    Onwunta, Akwum
    Stoll, Martin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (01) : 5 - 22
  • [43] Application of the Jacobian-free Newton-Krylov method in computational reactor physics
    Multiphysics Methods Group, Idaho National Laboratory, Idaho Falls, ID 83415, United States
    不详
    Am. Nucl. Soc. - Int. Conf. Math., Comput. Methods React. Phys., M C, (1560-1570):
  • [44] A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems
    Shin, Byeong-Chun
    Darvishi, M. T.
    Kim, Chang-Hyun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3190 - 3198
  • [45] Application of the Jacobian-Free Newton-Krylov Method for Multiphase Pipe Flows
    Krasnopolsky, B.
    Lukyanov, A. A.
    Starostin, A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [46] Wavelet preconditioned Newton-Krylov method for elastohydrodynamic lubrication of line contact problems
    Bujurke, N. M.
    Kantli, M. H.
    Shettar, Bharati M.
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 285 - 298
  • [47] Explicit stabilized multirate methods for the monodomain model in cardiac electrophysiology
    de Souza, Giacomo Rosilho
    Grote, Marcus J.
    Pezzuto, Simone
    Krause, Rolf
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (06) : 2225 - 2254
  • [48] Parallel Newton-Krylov Solver for the Euler Equations Discretized Using Simultaneous-Approximation Terms
    Hicken, Jason E.
    Zingg, David W.
    AIAA JOURNAL, 2008, 46 (11) : 2773 - 2786
  • [49] Parallel multigrid Newton-Krylov algorithms for euler computations on 3D unstructured grids
    Lepot, I
    Meers, F
    Essers, JA
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 85 - 90
  • [50] A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations
    Pernice, M
    Tocci, MD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 398 - 418