A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology

被引:7
|
作者
Kunisch, Karl [1 ]
Nagaiah, Chamakuri [1 ]
Wagner, Marcus [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Univ Leipzig, Dept Math, D-04009 Leipzig, Germany
基金
奥地利科学基金会;
关键词
PDE constrained optimization; Monodomain equations; Rogers-McCulloch model; Necessary optimality conditions; Numerical solution; Parallelization; Receding horizon strategy;
D O I
10.1007/s00791-012-0182-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work addresses an optimal control approach for a model problem in cardiac electrophysiology with the goal of extinction of a reentry phenomenon. After the introduction of the mathematical model, the derivation of the optimality system, the description of its discretization and a numerical feasibility study in a parallel environment are provided.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 50 条
  • [11] A Parallel Coloring Newton-Krylov Method for Multiphysics Coupling System in Nuclear Reactors
    Liu, Lixun
    Zhang, Han
    Peng, Xinru
    Dou, Qinrong
    Wu, Yingjie
    Guo, Jiong
    Li, Fu
    NUCLEAR SCIENCE AND ENGINEERING, 2025, 199 (01) : 61 - 81
  • [12] Application of the Newton-Krylov method to geophysical flows
    Reisner, J
    Mousseau, V
    Knoll, D
    MONTHLY WEATHER REVIEW, 2001, 129 (09) : 2404 - 2415
  • [13] Fast Newton-Krylov method for unstructured grids
    Blanco, M
    Zingg, DW
    AIAA JOURNAL, 1998, 36 (04) : 607 - 612
  • [14] Parallel inexact Newton-Krylov and quasi-Newton solvers for nonlinear elasticity
    Barnafi, Nicolas A.
    Pavarino, Luca F.
    Scacchi, Simone
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 400
  • [15] Massively Parallel Fully Coupled Simulation of Semiconductor Device Based on Newton-Krylov Method
    Li, Guangrong
    Zhao, Zhenguo
    Wang, Weijie
    Xu, Ran
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [16] An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics
    Chacon, L.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [17] Scalable and Robust Dual-Primal Newton-Krylov Deluxe Solvers for Cardiac Electrophysiology with Biophysical Ionic Models
    Huynh, Ngoc Mai Monica
    Pavarino, Luca F.
    Scacchi, Simone
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 1029 - 1052
  • [18] Using exact Jacobians in an implicit Newton-Krylov method
    Bramkamp, F. D.
    Buecker, H. M.
    Rasch, A.
    COMPUTERS & FLUIDS, 2006, 35 (10) : 1063 - 1073
  • [19] Parallel Newton-Krylov solvers for modeling of a navigation lock filling system
    Nguyen, Hung V.
    Cheng, Jing-Ru C.
    Hammack, E. Allen
    Maier, Robert S.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 699 - 707
  • [20] Aerodynamic Shape Optimization of Wings Using a Parallel Newton-Krylov Approach
    Leung, Timothy M.
    Zingg, David W.
    AIAA JOURNAL, 2012, 50 (03) : 540 - 550