A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology

被引:7
|
作者
Kunisch, Karl [1 ]
Nagaiah, Chamakuri [1 ]
Wagner, Marcus [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[2] Univ Leipzig, Dept Math, D-04009 Leipzig, Germany
基金
奥地利科学基金会;
关键词
PDE constrained optimization; Monodomain equations; Rogers-McCulloch model; Necessary optimality conditions; Numerical solution; Parallelization; Receding horizon strategy;
D O I
10.1007/s00791-012-0182-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work addresses an optimal control approach for a model problem in cardiac electrophysiology with the goal of extinction of a reentry phenomenon. After the introduction of the mathematical model, the derivation of the optimality system, the description of its discretization and a numerical feasibility study in a parallel environment are provided.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 50 条
  • [1] Time optimal control of the monodomain model in cardiac electrophysiology
    Kunisch, Karl
    Rund, Armin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (06) : 1664 - 1683
  • [2] A multigrid preconditioned Newton-Krylov method
    Knoll, DA
    Rider, WJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 691 - 710
  • [3] A parallel Newton-Krylov method for Navier-Stokes rotorcraft codes
    Ekici, K
    Lyrintzis, AS
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (03) : 225 - 230
  • [4] A Newton-Krylov method for solid mechanics
    Tardieu, N.
    Cheignon, E.
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2012, 21 (3-6): : 374 - 384
  • [5] Least squares dynamics in Newton-Krylov Model Predictive Control
    Knyazev, Andrew
    Malyshev, Alexander
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5045 - 5050
  • [6] Parallel Newton-Krylov method for rotary-wing flowfield calculations
    Wissink, AM
    Lyrintzis, AS
    Chronopoulos, AT
    AIAA JOURNAL, 1999, 37 (10) : 1213 - 1221
  • [7] An Innovational Jacobian-Split Newton-Krylov Method Combining the Advantages of the Jacobian-Free Newton-Krylov Method and the Finite Difference Jacobian-Based Newton-Krylov Method
    Liu, Lixun
    Zhang, Han
    Peng, Xinru
    Dou, Qinrong
    Wu, Yingjie
    Guo, Jiong
    Li, Fu
    NUCLEAR SCIENCE AND ENGINEERING, 2024, 198 (10) : 1911 - 1934
  • [8] Comparison of Parallel Preconditioners for a Newton-Krylov Flow Solver
    Hicken, Jason E.
    Osusky, Michal
    Zingg, David W.
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 457 - 463
  • [9] MULTIGRID PRECONDITIONERS FOR THE NEWTON-KRYLOV METHOD IN THE OPTIMAL CONTROL OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Soane, Ana Maria
    Draganescu, Andrei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1494 - 1523
  • [10] SECOND ORDER NUMERICAL SOLUTION FOR OPTIMAL CONTROL OF MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY
    Nagaiah, Chamakuri
    Kunisch, Karl
    Plank, Gernot
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 202 - 211