A NEW O(N.LOG-N) ALGORITHM FOR COMPUTING THE INTERSECTION OF CONVEX POLYGONS

被引:5
|
作者
KUNDU, S
机构
关键词
D O I
10.1016/0031-3203(87)90067-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:419 / 424
页数:6
相关论文
共 50 条
  • [31] AN O(N LOG N) ALGORITHM FOR A MAXMIN LOCATION PROBLEM
    RANGAN, CP
    GOVINDAN, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (02) : 203 - 205
  • [32] An O(n log n) algorithm for the generalized birthday problem
    Hwang, FK
    Wright, PE
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 443 - 451
  • [33] An O(n(3) log log n/log(2) n) time algorithm for all pairs shortest paths
    Han, Yijie
    Takaoka, Tadao
    JOURNAL OF DISCRETE ALGORITHMS, 2016, 38-41 : 9 - 19
  • [34] Dynamic planar convex hull with optimal query time and O(log n•log log n) update time
    Brodal, GS
    Jacob, R
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 57 - 70
  • [35] A practical O(n log2 n) time algorithm for computing the triplet distance on binary trees
    Sand, Andreas
    Brodal, Gerth Stolting
    Fagerberg, Rolf
    Pedersen, Christian N. S.
    Mailund, Thomas
    BMC BIOINFORMATICS, 2013, 14
  • [36] A practical O(n log2n) time algorithm for computing the triplet distance on binary trees
    Andreas Sand
    Gerth Stølting Brodal
    Rolf Fagerberg
    Christian NS Pedersen
    Thomas Mailund
    BMC Bioinformatics, 14
  • [37] A O(n log2 n) Checker and O(n2 log n) Filtering Algorithm for the Energetic Reasoning
    Ouellet, Yanick
    Quimper, Claude-Guy
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2018, 2018, 10848 : 477 - 494
  • [38] AN O(LOG N) ALGORITHM FOR COMPUTING GENERAL ORDER-K FIBONACCI NUMBERS
    WILSON, TC
    SHORTT, J
    INFORMATION PROCESSING LETTERS, 1980, 10 (02) : 68 - 75
  • [40] AN O(LOG N) PARALLEL CONNECTIVITY ALGORITHM
    SHILOACH, Y
    VISHKIN, U
    JOURNAL OF ALGORITHMS, 1982, 3 (01) : 57 - 67