AN O(N LOG N) ALGORITHM FOR A MAXMIN LOCATION PROBLEM

被引:5
|
作者
RANGAN, CP
GOVINDAN, R
机构
[1] Department of Computer Science and Engineering, Indian Institute of Technology, Madras
关键词
D O I
10.1016/0166-218X(92)90234-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an O(n log n) exact solution to the problem of locating a facility among n demand points in the plane which maximises the minimum Euclidean distance of the facility from the demand points and is constrained to be within a certain distance from each of the demand points. The previous best-known solution by Drezner et al. is an approximate iterative solution with each iteration taking O(n2) time in the worst case.
引用
收藏
页码:203 / 205
页数:3
相关论文
共 50 条
  • [1] O(N LOG N) ALGORITHM FOR THE RECTILINEAR ROUND-TRIP LOCATION PROBLEM
    DREZNER, Z
    TRANSPORTATION SCIENCE, 1985, 19 (01) : 91 - 93
  • [2] An O (n(log n)2/log log n) algorithm for the single maximum coverage location or the (1, Xp)-medianoid problem on trees
    Spoerhase, J.
    Wirth, H. -C.
    INFORMATION PROCESSING LETTERS, 2009, 109 (08) : 391 - 394
  • [3] An O(n log n) algorithm for the generalized birthday problem
    Hwang, FK
    Wright, PE
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 443 - 451
  • [4] An O(n log2 n) algorithm for a sink location problem in dynamic tree networks
    Mamada, S
    Uno, T
    Makino, K
    Fujishige, S
    EXPLORING NEW FRONTIERS OF THEORETICAL INFORMATICS, 2004, 155 : 251 - 264
  • [5] An O(log n/log log n)-Approximation Algorithm for the Asymmetric Traveling Salesman Problem
    Asadpour, Arash
    Goemans, Michel X.
    Madry, Aleksander
    Gharan, Shayan Oveis
    Saberi, Amin
    OPERATIONS RESEARCH, 2017, 65 (04) : 1043 - 1061
  • [6] An O(log n/log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem
    Asadpour, Arash
    Goemans, Michel X.
    Madry, Aleksander
    Gharan, Shayan Oveis
    Saberi, Amin
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 379 - +
  • [7] An O(n log2 n) algorithm for the optimal sink location problem in dynamic tree networks
    Mamada, Satoko
    Uno, Takeaki
    Makino, Kazuhisa
    Fujishige, Satoru
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (16) : 2387 - 2401
  • [8] An O(n log n) Algorithm for a Load Balancing Problem on Paths
    Devanur, Nikhil R.
    Feige, Uriel
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 326 - +
  • [9] AN O(N LOG M) ALGORITHM FOR THE JOSEPHUS PROBLEM
    LLOYD, EL
    JOURNAL OF ALGORITHMS, 1983, 4 (03) : 262 - 270
  • [10] AN O(N-LOG-N) UNIDIRECTIONAL ALGORITHM FOR THE CIRCULAR EXTREMA PROBLEM
    PETERSON, GL
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 1982, 4 (04): : 758 - 762