Monotone Graph Limits and Quasimonotone Graphs

被引:2
|
作者
Bollobas, Bela [1 ]
Janson, Svante [2 ]
Riordan, Oliver [3 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[3] Univ Oxford, Math Inst, Oxford OX1 3LB, England
基金
美国国家科学基金会;
关键词
D O I
10.1080/15427951.2012.687243
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (G(n)) of graphs in terms of a limiting object that may be represented by a symmetric function W on [0, 1](2), i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a "quasimonotonicity" property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L-1 norms of kernels of the form W-1 - W-2 with W-1 and W-2 monotone that may be of interest in its own right; no such inequality holds for general kernels.
引用
收藏
页码:187 / 231
页数:45
相关论文
共 50 条
  • [41] Monotone Drawings of Graphs with Fixed Embedding
    Patrizio Angelini
    Walter Didimo
    Stephen Kobourov
    Tamara Mchedlidze
    Vincenzo Roselli
    Antonios Symvonis
    Stephen Wismath
    Algorithmica, 2015, 71 : 233 - 257
  • [42] Monotone Drawings of Graphs with Fixed Embedding
    Angelini, Patrizio
    Didimo, Walter
    Kobourov, Stephen
    Mchedlidze, Tamara
    Roselli, Vincenzo
    Symvonis, Antonios
    Wismath, Stephen
    GRAPH DRAWING, 2012, 7034 : 379 - +
  • [43] On the Typical Structure of Graphs in a Monotone Property
    Janson, Svante
    Uzzell, Andrew J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [44] LEARNING GRAPHS WITH MONOTONE TOPOLOGY PROPERTIES
    Pavez, Eduardo
    Egilmez, Hilmi E.
    Ortega, Antonio
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 598 - 602
  • [45] A FAMILY OF NONREGULAR DISTANCE MONOTONE GRAPHS
    MOLLARD, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (03) : 539 - 542
  • [46] TANGENTIAL LIMITS OF MONOTONE SOBOLEV FUNCTIONS
    MIZUTA, Y
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1995, 20 (02): : 315 - 326
  • [47] Monotone drawings of graphs with few directions
    Angelini, Patrizio
    INFORMATION PROCESSING LETTERS, 2017, 120 : 16 - 22
  • [48] A NOTE ON MONOTONE PATHS IN LABELED GRAPHS
    REITERMAN, J
    COMBINATORICA, 1989, 9 (02) : 231 - 232
  • [49] A characterization of the interval distance monotone graphs
    Zhang, Heping
    Wang, Guangfu
    DISCRETE MATHEMATICS, 2007, 307 (21) : 2622 - 2627
  • [50] On rank-monotone graph operations and minimal obstruction graphs for the Lovász-Schrijver SDP hierarchy
    Au, Yu Hin
    Tuncel, Levent
    MATHEMATICAL PROGRAMMING, 2024,