Monotone Graph Limits and Quasimonotone Graphs

被引:2
|
作者
Bollobas, Bela [1 ]
Janson, Svante [2 ]
Riordan, Oliver [3 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[3] Univ Oxford, Math Inst, Oxford OX1 3LB, England
基金
美国国家科学基金会;
关键词
D O I
10.1080/15427951.2012.687243
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (G(n)) of graphs in terms of a limiting object that may be represented by a symmetric function W on [0, 1](2), i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a "quasimonotonicity" property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L-1 norms of kernels of the form W-1 - W-2 with W-1 and W-2 monotone that may be of interest in its own right; no such inequality holds for general kernels.
引用
收藏
页码:187 / 231
页数:45
相关论文
共 50 条
  • [21] Monotone Drawings of Graphs
    Angelini, Patrizio
    Colasante, Enrico
    Di Battista, Giuseppe
    Frati, Fabrizio
    Patrignani, Maurizio
    GRAPH DRAWING, 2011, 6502 : 13 - 24
  • [22] More on quasi-random graphs, subgraph counts and graph limits
    Janson, Svante
    Sos, Vera T.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 134 - 160
  • [23] End graph effects on chromatic polynomials for strip graphs of lattices and their asymptotic limits
    Tsai, Shan-Ho
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (3-4): : 349 - 366
  • [24] Graph limits of random graphs from a subset of connected k-trees
    Drmota, Michael
    Jin, Emma Yu
    Stufler, Benedikt
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (01) : 125 - 152
  • [25] End graph effects on chromatic polynomials for strip graphs of lattices and their asymptotic limits
    Tsai, SH
    PHYSICA A, 1998, 259 (3-4): : 349 - 366
  • [26] Monotone drawings of planar graphs
    Pach, J
    Tóth, G
    JOURNAL OF GRAPH THEORY, 2004, 46 (01) : 39 - 47
  • [27] MONOTONE PATHS IN ORDERED GRAPHS
    MULLER, V
    RODL, V
    COMBINATORICA, 1982, 2 (02) : 193 - 201
  • [28] Properties of functions with monotone graphs
    Michael Hrušák
    Tamás Mátrai
    Aleš Nekvinda
    Václav Vlasák
    Ondřej Zindulka
    Acta Mathematica Hungarica, 2014, 142 : 1 - 30
  • [29] Monotone drawings of planar graphs
    Pach, J
    Tóth, G
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 647 - 653
  • [30] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122