ON BUEKENHOUT METZ UNITALS OF ODD ORDER

被引:39
|
作者
BAKER, RD
EBERT, GL
机构
[1] Department of Mathematical Sciences, University of Delaware, Newark
关键词
D O I
10.1016/0097-3165(92)90038-V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The odd order Buekenhout-Metz unitals are enumerated and classified. Their inherited collineation groups are computed, they are shown to be self-dual as designs, and related designs are constructed. © 1992.
引用
收藏
页码:67 / 84
页数:18
相关论文
共 50 条
  • [11] Collineation groups of translation planes admitting hyperbolic Buekenhout or parabolic Buekenhout-Metz unitals
    Johnson, Norman L.
    Pomareda, Rolando
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (04) : 658 - 680
  • [12] Buekenhout unitals
    Ebert, GL
    DISCRETE MATHEMATICS, 1999, 208 : 247 - 260
  • [13] A GROUP-THEORETICAL CHARACTERIZATION OF PARABOLIC BUEKENHOUT-METZ UNITALS
    ABATANGELO, V
    LARATO, B
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1991, 5A (02): : 195 - 206
  • [14] Buekenhout-Tits Unitals
    G.L. Ebert
    Journal of Algebraic Combinatorics, 1997, 6 : 133 - 140
  • [15] Group theoretic characterizations of Buekenhout-Metz unitals in PG(2, q2)
    Donati, Giorgio
    Durante, Nicola
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (03) : 401 - 407
  • [16] A characterization of Buekenhout-Metz unitals in PG(2,q(2)), q even
    Abatangelo, V
    Larato, B
    GEOMETRIAE DEDICATA, 1996, 59 (02) : 137 - 145
  • [17] Buekenhout-Tits unitals
    Ebert, GL
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (02) : 133 - 140
  • [18] Enumeration of orthogonal Buekenhout unitals
    Baker, R. D.
    Ebert, G. L.
    Wantz, K. L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 261 - 283
  • [19] Enumeration of Nonsingular Buekenhout Unitals
    Baker, R. D.
    Ebert, G. L.
    Wantz, K. L.
    NOTE DI MATEMATICA, 2009, 29 : 69 - 89
  • [20] Enumeration of orthogonal Buekenhout unitals
    R. D. Baker
    G. L. Ebert
    K. L. Wantz
    Designs, Codes and Cryptography, 2010, 55 : 261 - 283