Buekenhout-Tits Unitals

被引:0
|
作者
G.L. Ebert
机构
[1] University of Delaware,Department of Mathematical Sciences
来源
关键词
Buekenhout unital; Tits ovoid;
D O I
暂无
中图分类号
学科分类号
摘要
A Buekenhout-Tits unital is defined to be a unital in PG(2, q2) obtained by coning the Tits ovoid using Buekenhout's parabolic method. The full linear collineation group stabilizing this unital is computed, and related design questions are also addressed. While the answers to the design questions are very similar to those obtained for Buekenhout-Metz unitals, the group theoretic results are quite different
引用
收藏
页码:133 / 140
页数:7
相关论文
共 50 条
  • [1] Buekenhout-Tits unitals
    Ebert, GL
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (02) : 133 - 140
  • [2] On the equivalence, stabilisers, and feet of Buekenhout-Tits unitals
    Faulkner, Jake
    van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (02) : 297 - 307
  • [3] Buekenhout unitals
    Ebert, GL
    DISCRETE MATHEMATICS, 1999, 208 : 247 - 260
  • [4] On Buekenhout-Metz unitals
    Casse, LRA
    Lunardon, G
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) : 237 - 240
  • [5] Enumeration of orthogonal Buekenhout unitals
    Baker, R. D.
    Ebert, G. L.
    Wantz, K. L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 261 - 283
  • [6] Enumeration of Nonsingular Buekenhout Unitals
    Baker, R. D.
    Ebert, G. L.
    Wantz, K. L.
    NOTE DI MATEMATICA, 2009, 29 : 69 - 89
  • [7] Enumeration of orthogonal Buekenhout unitals
    R. D. Baker
    G. L. Ebert
    K. L. Wantz
    Designs, Codes and Cryptography, 2010, 55 : 261 - 283
  • [8] Characterizations of Buekenhout-Metz unitals
    Casse, LRA
    OKeefe, CM
    Penttila, T
    GEOMETRIAE DEDICATA, 1996, 59 (01) : 29 - 42
  • [9] CHARACTERIZATION OF BUEKENHOUT-METZ UNITALS
    LEFEVREPERCSY, C
    ARCHIV DER MATHEMATIK, 1981, 36 (06) : 565 - 568
  • [10] ON BUEKENHOUT METZ UNITALS OF ODD ORDER
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 60 (01) : 67 - 84