The Gauss-Bonnet theorem for vector bundles

被引:4
|
作者
Bell, Denis [1 ]
机构
[1] Univ North Florida, Dept Math, 4567 St,Johns Bluff Rd South, Jacksonville, FL 32224 USA
关键词
Gauss-Bonnet formula; Thom class; Euler class; metric connection;
D O I
10.1007/s00022-006-0037-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of the Gauss-Bonnet theorem for a real oriented Riemannian vector bundle E of even rank over a closed compact orientable manifold M. This theorem reduces to the classical Gauss-Bonnet-Chern theorem in the special case when M is a Riemannian manifold and E is the tangent bundle of M endowed with the Levi-Civita connection. The proof is based on an explicit geometric construction of the Thom class for 2-plane bundles.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [41] Coherent Tangent Bundles and Gauss-Bonnet Formulas for Wave Fronts
    Saji, Kentaro
    Umehara, Masaaki
    Yamada, Kotaro
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (02) : 383 - 409
  • [42] Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem
    De Luca, L.
    Friesecke, G.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (01) : 69 - 90
  • [43] Application of the Gauss-Bonnet theorem to lensing in the NUT metric
    Halla, Mourad
    Perlick, Volker
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (11)
  • [44] Dynamical System of Gauss-Bonnet Model with Vector Field
    Sutiono, Azwar
    Bansawang, B. J.
    Suroso, Agus
    Surungan, Tasrief
    Zen, Freddy P.
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES, 2019, 1127
  • [45] Gauss-Bonnet boson stars with a single Killing vector
    Henderson, Laura J.
    Mann, Robert B.
    Stotyn, Sean
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [46] Gauss-Bonnet inflation
    Kanti, Panagiota
    Gannouji, Radouane
    Dadhich, Naresh
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [47] Note on Gauss-Bonnet
    Gottlieb, DH
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (01): : 35 - 35
  • [48] On Gauss-Bonnet Curvatures
    Labbi, Mohammed Larbi
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [49] Integrals of equivariant forms and a Gauss-Bonnet theorem for constructible sheaves
    Libine, Matvei
    TOPOLOGY, 2008, 47 (01) : 1 - 39
  • [50] On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes
    Klaus, Stephan
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1345 - 1362