The Gauss-Bonnet theorem for vector bundles

被引:4
|
作者
Bell, Denis [1 ]
机构
[1] Univ North Florida, Dept Math, 4567 St,Johns Bluff Rd South, Jacksonville, FL 32224 USA
关键词
Gauss-Bonnet formula; Thom class; Euler class; metric connection;
D O I
10.1007/s00022-006-0037-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of the Gauss-Bonnet theorem for a real oriented Riemannian vector bundle E of even rank over a closed compact orientable manifold M. This theorem reduces to the classical Gauss-Bonnet-Chern theorem in the special case when M is a Riemannian manifold and E is the tangent bundle of M endowed with the Levi-Civita connection. The proof is based on an explicit geometric construction of the Thom class for 2-plane bundles.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [21] Hawking radiation via Gauss-Bonnet theorem
    Ovgun, A.
    Sakalli, I
    ANNALS OF PHYSICS, 2020, 413
  • [22] Graph Characteristic from the Gauss-Bonnet Theorem
    ElGhawalby, Hewayda
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 207 - 216
  • [23] A remark on the Gauss-Bonnet theorem in Finsler geometry
    Bidabad, Behroz
    BSG PROCEEDINGS 16, 2009, 16 : 42 - 46
  • [24] A note on the Gauss-Bonnet theorem for Finsler spaces
    Bao, D
    Chern, SS
    ANNALS OF MATHEMATICS, 1996, 143 (02) : 233 - 252
  • [25] Applications of the Gauss-Bonnet theorem to gravitational lensing
    Gibbons, G. W.
    Werner, M. C.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [26] Generalized Noether theorem for Gauss-Bonnet cosmology
    Dong, Han
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 573 - 580
  • [27] Holographic vector superconductor in Gauss-Bonnet gravity
    Lu, Jun-Wang
    Wu, Ya-Bo
    Cai, Tuo
    Liu, Hai-Min
    Ren, Yin-Shuan
    Liu, Mo-Lin
    NUCLEAR PHYSICS B, 2016, 903 : 360 - 373
  • [28] COVERINGS BY n-CUBES AND THE GAUSS-BONNET THEOREM
    Celakoska, Emilija
    Trencevski, Kostadin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 1063 - 1072
  • [29] The horospherical Gauss-Bonnet type theorem in hyperbolic space
    Izumiya, Shyuichi
    Romero Fuster, Maria del Carmen
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 965 - 984
  • [30] Gauss-Bonnet's theorem and closed Frenet frames
    Rogen, P
    GEOMETRIAE DEDICATA, 1998, 73 (03) : 295 - 315