Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws

被引:0
|
作者
Gomez-Bueno, I. [1 ]
Boscarino, S. [2 ]
Castro, M. J. [1 ]
Pares, C. [1 ]
Russo, G. [2 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat Estadist IO & Matemat Aplicada, Malaga 29071, Spain
[2] Univ Catania, Dipartimento Matemat Informat, Viale Andrea Dona 6, I-95125 Catania, Italy
关键词
Systems of balance laws; Well-balanced methods; Finite-volume methods; High-order methods; Reconstruction operators; Implicit methods; Semi-implicit methods; Shallow water equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to design implicit and semi-implicit high-order well-balanced finite-volume numerical methods for 1D systems of balance laws. The strategy introduced by two of the authors in some previous papers for explicit schemes based on the applica-tion of a well-balanced reconstruction operator is applied. The well-balanced property is preserved when quadrature formulas are used to approximate the averages and the integral of the source term in the cells. Concerning the time evolution, this technique is combined with a time discretization method of type RK-IMEX or RK-implicit. The methodology will be applied to several systems of balance laws.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:18 / 48
页数:31
相关论文
共 50 条
  • [21] On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems
    Castro Diaz, M. J.
    Chacon Rebollo, T.
    Fernandez-Nieto, E. D.
    Pares, Carlos
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03): : 1093 - 1126
  • [22] Development of a semi-implicit fluid modeling code using finite-volume method based on Cartesian grids
    Smith, Matthew R.
    Hung, Chieh-Tsan
    Lin, Kun-Mo
    Wu, Jong-Shinn
    Yu, Jen-Perng
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 170 - 172
  • [23] Well-balanced finite-volume model for long-wave runup
    Wei, Y
    Mao, XZ
    Cheung, KF
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2006, 132 (02) : 114 - 124
  • [24] Well-Balanced High-Order Discontinuous Galerkin Methods for Systems of Balance Laws
    Guerrero Fernandez, Ernesto
    Escalante, Cipriano
    Castro Diaz, Manuel J.
    MATHEMATICS, 2022, 10 (01)
  • [25] High order accurate semi-implicit WENO schemes for hyperbolic balance laws
    Crnjaric-Zic, Nelida
    Crnkovic, Bojan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8611 - 8629
  • [26] The Convergence of Semi-Implicit Numerical Methods
    Tutueva, Aleksandra V.
    Rodionova, Ekaterina A.
    Baidina, Mariia P.
    Kavunskaia, Anastasiia V.
    Kozak, Maria N.
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 366 - 368
  • [27] Solitary wave run up and overtopping by a semi-implicit finite-volume shallow-water Boussinesq model
    Stansby, PK
    JOURNAL OF HYDRAULIC RESEARCH, 2003, 41 (06) : 639 - 647
  • [28] A coastal ocean model of semi-implicit finite volume unstructured grid
    Geng Yan-fen
    Wang Zhi-li
    CHINA OCEAN ENGINEERING, 2012, 26 (02) : 277 - 290
  • [29] Semi-implicit finite volume schemes for a chemotaxis-growth model
    Akhmouch, M.
    Amine, M. Benzakour
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 702 - 720
  • [30] Development of a semi-implicit contact methodology for finite volume stress solvers
    Scolaro, Alessandro
    Fiorina, Carlo
    Clifford, Ivor
    Pautz, Andreas
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (02) : 309 - 338