On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems

被引:40
|
作者
Castro Diaz, M. J.
Chacon Rebollo, T.
Fernandez-Nieto, E. D.
Pares, Carlos
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Seville, Dept Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
[3] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2007年 / 29卷 / 03期
关键词
well-balanced finite volume method; upwinding; shallow water; source terms; two-layer flows;
D O I
10.1137/040607642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce a general family of finite volume methods for nonhomogeneous hyperbolic systems with nonconservative terms. We prove that all of them are "asymptotically well-balanced": they preserve all smooth stationary solutions in all the domain except for a set whose measure tends to zero as Delta x tends to zero. This theory is applied to solve the bilayer shallow-water equations with arbitrary cross-section. Finally, some numerical tests are presented for simplified but meaningful geometries, comparing the computed solution with approximated asymptotic analytical solutions.
引用
收藏
页码:1093 / 1126
页数:34
相关论文
共 50 条