On a third-order boundary value problem at resonance on the half-line

被引:0
|
作者
S. A. Iyase
机构
[1] Covenant University Ota,Department of Mathematics
来源
关键词
34B10; 34B15; 34B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish existence of solutions for the following boundary value problem on the half-line: (q(t)u′′(t))′=g(t,u(t),u′(t),u′′(t)),t∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q(t)u''(t))' = g(t, u(t), u'(t), u''(t)),\;\;\; t \in (0, \infty )$$\end{document} subject to the boundary conditions u′(0)=∑i=1mαi∫0ξiu(t)dt,u(0)=0,limt→∞q(t)u′′(t)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u'(0) = \sum ^{m}_{i=1}\alpha _i\int ^{\xi _i}_0 u(t)\mathrm{d}t, u(0) = 0,\; \lim _{t\rightarrow \infty }q(t)u''(t)=0.$$\end{document} We establish sufficient conditions for the existence of at least one solution using coincidence degree arguments. An example is provided to validate our result.
引用
收藏
页码:43 / 53
页数:10
相关论文
共 50 条
  • [31] Boundary value problem for the KdV equation on a half-line
    Adler, VE
    Habibullin, IT
    Shabat, AB
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (01) : 78 - 90
  • [32] Unbounded Solutions of Second-Order Multipoint Boundary Value Problem on the Half-Line
    Liu, Lishan
    Hao, Xinan
    Wu, Yonghong
    BOUNDARY VALUE PROBLEMS, 2010,
  • [33] Existence of solutions for a higher order fractional boundary value problem posed on the half-line
    Boucenna, A.
    Moussaoui, T.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (01)
  • [34] A boundary value problem on the half-line for higher-order nonlinear differential equations
    Philos, Ch. G.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 1017 - 1035
  • [35] EXISTENCE RESULTS FOR A SUBLINEAR SECOND ORDER DIRICHLET BOUNDARY VALUE PROBLEM ON THE HALF-LINE
    Bouafia, Dahmane
    Moussaoui, Toufik
    OPUSCULA MATHEMATICA, 2020, 40 (05) : 537 - 548
  • [36] Unbounded Solutions of Second-Order Multipoint Boundary Value Problem on the Half-Line
    Lishan Liu
    Xinan Hao
    Yonghong Wu
    Boundary Value Problems, 2010
  • [37] Solvability of boundary value problem at resonance for third-order functional differential equations
    Pinghua Yang
    Zengji Du
    Weigao Ge
    Proceedings Mathematical Sciences, 2008, 118 : 307 - 318
  • [38] A note on a third-order multi-point boundary value problem at resonance
    Lin, Xiaojie
    Du, Zengji
    Meng, Fanchao
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (13) : 1690 - 1700
  • [39] Solvability of boundary value problem at resonance for third-order functional differential equations
    Yang, Pinghua
    Du, Zengji
    Ge, Weigao
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (02): : 307 - 318
  • [40] Unbounded solutions of third order three-point boundary value problems on a half-line
    Agarwal, Ravi P.
    Cetin, Erbil
    ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (02) : 105 - 119