On a third-order boundary value problem at resonance on the half-line

被引:0
|
作者
S. A. Iyase
机构
[1] Covenant University Ota,Department of Mathematics
来源
关键词
34B10; 34B15; 34B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish existence of solutions for the following boundary value problem on the half-line: (q(t)u′′(t))′=g(t,u(t),u′(t),u′′(t)),t∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q(t)u''(t))' = g(t, u(t), u'(t), u''(t)),\;\;\; t \in (0, \infty )$$\end{document} subject to the boundary conditions u′(0)=∑i=1mαi∫0ξiu(t)dt,u(0)=0,limt→∞q(t)u′′(t)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u'(0) = \sum ^{m}_{i=1}\alpha _i\int ^{\xi _i}_0 u(t)\mathrm{d}t, u(0) = 0,\; \lim _{t\rightarrow \infty }q(t)u''(t)=0.$$\end{document} We establish sufficient conditions for the existence of at least one solution using coincidence degree arguments. An example is provided to validate our result.
引用
收藏
页码:43 / 53
页数:10
相关论文
共 50 条
  • [21] Third-Order Generalized Discontinuous Impulsive Problems on the Half-Line
    Minhos, Feliz
    Carapinha, Rui
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (04) : 548 - 565
  • [22] Existence of Solutions for Third-Order φ-Laplacian BVPs on the Half-Line
    Zerki, A.
    Bachouche, K.
    Ait-Mahiout, K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [23] Solvability for p-Laplacian boundary value problem at resonance on the half-line
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2013,
  • [24] A non-autonomous second order boundary value problem on the half-line
    Gregory S. Spradlin
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 639 - 645
  • [25] Solvability for p-Laplacian boundary value problem at resonance on the half-line
    Weihua Jiang
    Boundary Value Problems, 2013
  • [26] A non-autonomous second order boundary value problem on the half-line
    Spradlin, Gregory S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (05): : 639 - 645
  • [27] On a third-order multi-point boundary value problem at resonance
    Du, ZJ
    Lin, XJ
    Ge, WG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 217 - 229
  • [28] On the existence of solutions for a boundary value problem on the half-line
    Galewski, Marek
    Moussaoui, Toufik
    Soufi, Ibrahim
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (12) : 1 - 12
  • [29] The Solvability of the Discrete Boundary Value Problem on the Half-Line
    Nockowska-Rosiak, Magdalena
    ENTROPY, 2021, 23 (11)
  • [30] Boundary value problem for the KDV equation on a half-line
    V. E. Adler
    L. T. Habibullin
    A. B. Shabat
    Theoretical and Mathematical Physics, 1997, 110 : 78 - 90