Reentrant Orbital Effect against Superconductivity in the Quasi-Two-Dimensional Superconductor NbS2

被引:0
|
作者
A. G. Lebed
机构
[1] Department of Physics,
[2] University of Arizona,undefined
[3] Landau Institute for Theoretical Physics,undefined
[4] Russian Academy of Sciences,undefined
来源
JETP Letters | 2021年 / 114卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive an integral equation for the superconducting gap, which takes into account the quantum nature of electron motion in a parallel magnetic field in a quasi-two-dimensional superconductor in the presence of a nonzero perpendicular field component. By comparison of our theoretical results with the recent experimental data obtained on NbS2, we show that the orbital effect against superconductivity partially destroys superconductivity in the so-called Ginzburg–Landau area of this quasi-two-dimensional conductor, as expected. Nevertheless, at relatively high magnetic fields, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \simeq 15$$\end{document} T, the orbital effect starts to improve the Fulde–Ferrell–Larkin–Ovchinnikov phase in NbS2, due to the quantum nature of electron motion in a parallel magnetic field. In our opinion, this is the clearest demonstration that the orbital effect against superconductivity in a parallel magnetic field has a reentrant nature.
引用
收藏
页码:479 / 485
页数:6
相关论文
共 50 条
  • [41] Observation of quasi-two-dimensional superconductivity at the EuO-BaBiO3 interface
    Qiao, Weiliang
    Zhao, Jiali
    Chen, Yuxiao
    Cao, Shenggen
    Xing, Wenyu
    Cai, Ranran
    Guo, Liangliang
    Qian, Tian
    Han, Wei
    Xie, X. C.
    PHYSICAL REVIEW B, 2024, 109 (05)
  • [42] Fabrication quasi-two-dimensional conducting area and superconductivity at the ferroelectric/dielectric interfaces
    Mamin, R. F.
    Piyanzina, I. I.
    Pavlov, D. P.
    Kabanov, V. V.
    FERROELECTRICS, 2020, 567 (01) : 113 - 120
  • [43] Janssen effect and the stability of quasi-two-dimensional sandpiles
    Ebrahimi, Fatemeh
    Azizpour, Tahereh
    Maleki, Hamed
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [44] Quasi-two-dimensional decaying turbulence subject to the effect
    Espa, S.
    Carnevale, G. F.
    Cenedese, A.
    Mariani, M.
    JOURNAL OF TURBULENCE, 2008, 9 (36): : 1 - 18
  • [45] Effect of impurities on quasi-two-dimensional quantum antiferromagnet
    Chernyshev, AL
    Chen, YC
    Neto, AHC
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 8387 - 8389
  • [46] Multi-Band Analysis on Physical Properties of the Quasi-Two-Dimensional Superconductor NbSe2
    Ye, Chenxiao
    Che, Jiantao
    Han, Tianyi
    Huang, Hai
    COATINGS, 2023, 13 (03)
  • [47] Anisotropy of the Hall Effect in a Quasi-Two-Dimensional Electron-Doped Nd2 – xCexCuO4 + δ Superconductor
    A. S. Klepikova
    T. B. Charikova
    N. G. Shelushinina
    D. S. Petukhov
    A. A. Ivanov
    Physics of the Solid State, 2018, 60 : 2162 - 2165
  • [48] Phase diagram of the quasi-two-dimensional organic superconductor (ET)(2)Cu[N(CN)(2)]Br
    Gaal, R
    Fulop, G
    Kriza, G
    Szeghy, G
    Mihaly, G
    PHYSICA B, 1997, 230 : 1002 - 1004
  • [49] Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4
    Bergemann, C
    Mackenzie, AP
    Julian, SR
    Forsythe, D
    Ohmichi, E
    ADVANCES IN PHYSICS, 2003, 52 (07) : 639 - 725
  • [50] Quasi-two-dimensional superconductivity in topological nodal-line semimetal SnTaS2 nanoflakes
    Zhu, Ankang
    Zhu, Mengcheng
    Nie, Yong
    Han, Minglong
    Li, Liang
    Liu, Xue
    Chen, Xuegang
    Han, Yuyan
    Gao, Wenshuai
    Tian, Mingliang
    PHYSICAL REVIEW B, 2024, 110 (11)