Reentrant Orbital Effect against Superconductivity in the Quasi-Two-Dimensional Superconductor NbS2

被引:0
|
作者
A. G. Lebed
机构
[1] Department of Physics,
[2] University of Arizona,undefined
[3] Landau Institute for Theoretical Physics,undefined
[4] Russian Academy of Sciences,undefined
来源
JETP Letters | 2021年 / 114卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive an integral equation for the superconducting gap, which takes into account the quantum nature of electron motion in a parallel magnetic field in a quasi-two-dimensional superconductor in the presence of a nonzero perpendicular field component. By comparison of our theoretical results with the recent experimental data obtained on NbS2, we show that the orbital effect against superconductivity partially destroys superconductivity in the so-called Ginzburg–Landau area of this quasi-two-dimensional conductor, as expected. Nevertheless, at relatively high magnetic fields, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \simeq 15$$\end{document} T, the orbital effect starts to improve the Fulde–Ferrell–Larkin–Ovchinnikov phase in NbS2, due to the quantum nature of electron motion in a parallel magnetic field. In our opinion, this is the clearest demonstration that the orbital effect against superconductivity in a parallel magnetic field has a reentrant nature.
引用
收藏
页码:479 / 485
页数:6
相关论文
共 50 条
  • [21] Superconductivity in charge ordered metal for quasi-two-dimensional organic conductor
    Kobayashi, A
    Katayama, S
    Suzumura, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (11) : 2897 - 2900
  • [22] Thermodynamic properties of the superconductivity in quasi-two-dimensional Dirac electronic systems
    O. Abah
    M. N. Kiselev
    The European Physical Journal B, 2011, 82 : 47 - 52
  • [23] Quantum criticality and superconductivity in quasi-two-dimensional Dirac electronic systems
    Marino, EC
    Nunes, LHCM
    NUCLEAR PHYSICS B, 2006, 741 (03) : 404 - 420
  • [24] Chiral Triplet Quasi-Two-Dimensional Superconductor in a Parallel Magnetic Field
    A. G. Lebed
    JETP Letters, 2022, 115 : 356 - 361
  • [25] Possibility of coexistence of ferromagnetism and superconductivity in an anisotropic quasi-two-dimensional system
    Zhou, Y
    Li, J
    Gong, CD
    CHINESE PHYSICS LETTERS, 2004, 21 (09) : 1805 - 1807
  • [26] Thermodynamic properties of the superconductivity in quasi-two-dimensional Dirac electronic systems
    Abah, O.
    Kiselev, M. N.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (01): : 47 - 52
  • [27] Quasi-two-dimensional superconductivity in wurtzite-structured InN films
    Ling, D. C.
    Cheng, J. H.
    Lo, Y. Y.
    Du, C. H.
    Chiu, A. P.
    Chang, C. A.
    Chang, P. H.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (12): : 4594 - 4597
  • [28] Quasi-two-dimensional extraordinary Hall effect
    Ryzhanova, N.
    Vedyayev, A.
    Pertsova, A.
    Dieny, B.
    PHYSICAL REVIEW B, 2009, 80 (02)
  • [29] EFFECT OF NEXT-NEAREST-NEIGHBOR TRANSFER ENERGY ON THE QUASI-TWO-DIMENSIONAL SUPERCONDUCTIVITY.
    Mishima, Akiomi
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 148 (1-3): : 371 - 373
  • [30] Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet Co1/3NbS2
    Tenasini, Giulia
    Martino, Edoardo
    Ubrig, Nicolas
    Ghimire, Nirmal J.
    Berger, Helmuth
    Zaharko, Oksana
    Wu, Fengcheng
    Mitchell, J. F.
    Martin, Ivar
    Forro, Laszlo
    Morpurgo, Alberto F.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):