In this paper, we provide descriptions of the boundedness and compactness for the Toeplitz operators Tμ,β between distinct weighted Bergman spaces Lap(ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_a^p\left(\omega \right)$$\end{document} and Laq(ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_a^q\left(\omega \right)$$\end{document} for 0 < p ⩽ 1, q = 1, −1 < α, β < ∞ and 0 < p ⩽ 1 < q < ∞, −1 < β ⩽ α < ∞, respectively. Part of our results are new even in the unweighted Bergman spaces.